Loading…
Global asymptotic behavior for delay dynamic equations
We give conditions under which the trivial solution of a first-order nonlinear variable-delay dynamic equation is asymptotically stable, for arbitrary time scales that are unbounded above. In an example, we apply our techniques to a logistic dynamic equation on isolated, unbounded time scales.
Saved in:
Published in: | Nonlinear analysis 2007-04, Vol.66 (7), p.1633-1644 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643 |
container_end_page | 1644 |
container_issue | 7 |
container_start_page | 1633 |
container_title | Nonlinear analysis |
container_volume | 66 |
creator | Anderson, Douglas R. Kenz, Zackary R. |
description | We give conditions under which the trivial solution of a first-order nonlinear variable-delay dynamic equation is asymptotically stable, for arbitrary time scales that are unbounded above. In an example, we apply our techniques to a logistic dynamic equation on isolated, unbounded time scales. |
doi_str_mv | 10.1016/j.na.2006.02.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29831385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X06001003</els_id><sourcerecordid>29831385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3j3vR266TZJPNehPRKhS8KHgL2WSCKfvRJttC_3u3tODJwzCH-b03M4-QWwoFBSofVkVvCgYgC2AF0PKMzKiqeC4YFedkBlyyXJTy-5JcpbQCAFpxOSNy0Q6NaTOT9t16HMZgswZ_zC4MMfNTOWzNPnP73nTTCDdbM4ahT9fkwps24c2pz8nX68vn81u-_Fi8Pz8tc8uFGHNXWWZ9IwEtdaoxDDyvS6iplK5xllvhpou9Mr4CFCXKuqYKgSrPOKWy5HNyf_Rdx2GzxTTqLiSLbWt6HLZJs1pxypWYQDiCNg4pRfR6HUNn4l5T0IeA9Er3Rh8C0sD0FNAkuTt5m2RN66PpbUh_OiWqugI1cY9HDqdHdwGjTjZgb9GFiHbUbgj_L_kFWzd5qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29831385</pqid></control><display><type>article</type><title>Global asymptotic behavior for delay dynamic equations</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Anderson, Douglas R. ; Kenz, Zackary R.</creator><creatorcontrib>Anderson, Douglas R. ; Kenz, Zackary R.</creatorcontrib><description>We give conditions under which the trivial solution of a first-order nonlinear variable-delay dynamic equation is asymptotically stable, for arbitrary time scales that are unbounded above. In an example, we apply our techniques to a logistic dynamic equation on isolated, unbounded time scales.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.02.014</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymptotic behavior ; Delay ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematics ; Nonlinear equation ; Sciences and techniques of general use ; Time scales ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2007-04, Vol.66 (7), p.1633-1644</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643</citedby><cites>FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X06001003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18579708$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Douglas R.</creatorcontrib><creatorcontrib>Kenz, Zackary R.</creatorcontrib><title>Global asymptotic behavior for delay dynamic equations</title><title>Nonlinear analysis</title><description>We give conditions under which the trivial solution of a first-order nonlinear variable-delay dynamic equation is asymptotically stable, for arbitrary time scales that are unbounded above. In an example, we apply our techniques to a logistic dynamic equation on isolated, unbounded time scales.</description><subject>Asymptotic behavior</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematics</subject><subject>Nonlinear equation</subject><subject>Sciences and techniques of general use</subject><subject>Time scales</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3j3vR266TZJPNehPRKhS8KHgL2WSCKfvRJttC_3u3tODJwzCH-b03M4-QWwoFBSofVkVvCgYgC2AF0PKMzKiqeC4YFedkBlyyXJTy-5JcpbQCAFpxOSNy0Q6NaTOT9t16HMZgswZ_zC4MMfNTOWzNPnP73nTTCDdbM4ahT9fkwps24c2pz8nX68vn81u-_Fi8Pz8tc8uFGHNXWWZ9IwEtdaoxDDyvS6iplK5xllvhpou9Mr4CFCXKuqYKgSrPOKWy5HNyf_Rdx2GzxTTqLiSLbWt6HLZJs1pxypWYQDiCNg4pRfR6HUNn4l5T0IeA9Er3Rh8C0sD0FNAkuTt5m2RN66PpbUh_OiWqugI1cY9HDqdHdwGjTjZgb9GFiHbUbgj_L_kFWzd5qw</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Anderson, Douglas R.</creator><creator>Kenz, Zackary R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Global asymptotic behavior for delay dynamic equations</title><author>Anderson, Douglas R. ; Kenz, Zackary R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Asymptotic behavior</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematics</topic><topic>Nonlinear equation</topic><topic>Sciences and techniques of general use</topic><topic>Time scales</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Douglas R.</creatorcontrib><creatorcontrib>Kenz, Zackary R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Douglas R.</au><au>Kenz, Zackary R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global asymptotic behavior for delay dynamic equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>66</volume><issue>7</issue><spage>1633</spage><epage>1644</epage><pages>1633-1644</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We give conditions under which the trivial solution of a first-order nonlinear variable-delay dynamic equation is asymptotically stable, for arbitrary time scales that are unbounded above. In an example, we apply our techniques to a logistic dynamic equation on isolated, unbounded time scales.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.02.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2007-04, Vol.66 (7), p.1633-1644 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_29831385 |
source | Elsevier; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Asymptotic behavior Delay Exact sciences and technology Global analysis, analysis on manifolds Mathematics Nonlinear equation Sciences and techniques of general use Time scales Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Global asymptotic behavior for delay dynamic equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20asymptotic%20behavior%20for%20delay%20dynamic%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=Anderson,%20Douglas%20R.&rft.date=2007-04-01&rft.volume=66&rft.issue=7&rft.spage=1633&rft.epage=1644&rft.pages=1633-1644&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.02.014&rft_dat=%3Cproquest_cross%3E29831385%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-d7c2cfb60ec1d8ba20f39409166dbdc3c5d006f8af70e54e69918e018f2311643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29831385&rft_id=info:pmid/&rfr_iscdi=true |