Loading…

Intergranular films at Au-sapphire interfaces

The existence of nanometer-thick amorphous equilibrium films at metal-ceramic interfaces has been experimentally verified for the Au–Al2O3 system. The films were formed using a novel experimental approach, in which thin sputtered films of Au were dewetted on a sapphire substrate which was previously...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2006-12, Vol.41 (23), p.7775-7784
Main Authors: BARAM, Mor, KAPLAN, Wayne D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The existence of nanometer-thick amorphous equilibrium films at metal-ceramic interfaces has been experimentally verified for the Au–Al2O3 system. The films were formed using a novel experimental approach, in which thin sputtered films of Au were dewetted on a sapphire substrate which was previously partially wetted with drops of anorthite glass (CaO–2SiO2–Al2O3). High-resolution transmission electron microscopy and qualitative analytical transmission electron microscopy were used to confirm the existence of the amorphous films. In addition, positive and relatively large Hamaker constants were calculated for the Au-film-Al2O3 interface, which indicates the existence of an attractive van der Waals force which stabilizes the film, similar to equilibrium films at grain boundaries in ceramics. A ∼ 1 nm thick surface film was also detected on the (0001) surface of sapphire substrates partially wetted by anorthite glass. The refractive index required to stabilize the surface films, via a positive Hamaker constant, is explored.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-006-0897-7