Loading…

Airlift-reactor design and test for aerobic environmental bioprocesses with extremely high solid contents at high temperatures

Bioprocesses at high temperatures gained considerably in importance within the last years and several new applications for aerobic, extreme thermophilic environmental bioprocesses are emerging. However, this development is not yet matched by adequate bioreactor designs, especially if it comes to the...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 2003-01, Vol.48 (8), p.69-77
Main Authors: Feitkenhauer, H, Maleski, R, Märkl, H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioprocesses at high temperatures gained considerably in importance within the last years and several new applications for aerobic, extreme thermophilic environmental bioprocesses are emerging. However, this development is not yet matched by adequate bioreactor designs, especially if it comes to the treatment of solids. In this communication we propose the use of airlift reactors to bridge this gap. The design of an internal draught tube bioreactor (Area(Riser)/Area(Downcomer) . 1; Height/Diameter . 8) is described in detail. The influence of the temperature on gas hold-up, liquid velocity and mixing characteristics was investigated. It was shown that this reactor could hold up to 1 t quartz sand per m3 in suspension at moderate aeration rates. Despite the decreasing oxygen solubility, the oxygen transfer rate increased with rising temperature due to the improved mass transfer parameters. With rising solid content, the oxygen transfer rate increased and reached a maximum at a solid content of about 140 kg m(-3) before it decreased again. However, it is only slightly reduced at the highest solid contents. The results demonstrate that aerobic bioprocesses at high temperatures are not only feasible, but can be very efficient if carried out in proper bioreactors.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2003.0454