Loading…

Alteration kinetics of the glass-ceramic zirconolite and role of the alteration film – Comparison with the SON68 glass

The glass-ceramic zirconolite is being considered for specific conditioning of plutonium or the minor actinides. The actinides are distributed throughout the zirconolite crystals and the residual glass phase. Since zirconolite alteration is extremely limited, actinide release from the glass-ceramic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2007-06, Vol.366 (1), p.277-287
Main Authors: Martin, C., Ribet, I., Frugier, P., Gin, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The glass-ceramic zirconolite is being considered for specific conditioning of plutonium or the minor actinides. The actinides are distributed throughout the zirconolite crystals and the residual glass phase. Since zirconolite alteration is extremely limited, actinide release from the glass-ceramic material is mainly attributable to alteration of the residual glass. Specimens corresponding to the residual glass phase alone were therefore altered under different conditions to compare their kinetics with the one of the SON68 glass (inactive R7T7 type glass). Glass-ceramic zirconolite presents a more important rate decrease occuring more rapidly and that induces a quantity of glass altered at least 10 times as small as for SON68 glass. This slowdown of the alteration rate is attributed to the formation of an alteration film that has been the subject of a specific study. We have in particular identified a dense phase enriched in titanium and neodymium that probably influences deeply the kinetics.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2007.02.002