Loading…
Molecular-dynamics Study on Crack Growth Behavior Relevant to Crystal Nucleation in Amorphous Metal
In this paper, the internal structure-changes around the crack-tip and the pertinent crack growth behavior in an amorphous metal were studied by a molecular dynamics (MD) simulation. In order to perform a large scale calculation, the domain decomposition method was used for parallel calculation. The...
Saved in:
Published in: | Computer modeling in engineering & sciences 2005-07, Vol.9 (1), p.75-84 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the internal structure-changes around the crack-tip and the pertinent crack growth behavior in an amorphous metal were studied by a molecular dynamics (MD) simulation. In order to perform a large scale calculation, the domain decomposition method was used for parallel calculation. The Finnis-Sinclair potential for$\alpha$-iron was used to describe the interatomic potential. Computed results show that nano-scaled crystalline phase grows around the crack-tip. The distribution of deformation zones and deformation mechanism are significantly altered. While grains are relatively small, they are not deformed, and the most amorphous-crystal interfaces have a large strain for phase transition. The emission of dislocations from the near crack-tip is observed after the crystal phase covered the crack-tip surfaces. Although CTOD obtained from MD analysis agrees to Dugdale's model very well during the amorphous state, the crack opening behavior changes remarkably after the crystallization. |
---|---|
ISSN: | 1526-1492 1526-1506 |
DOI: | 10.3970/cmes.2005.009.075 |