Loading…

Analysis of commutation errors for functions with low regularity

Commutation errors arise in the derivation of the space averaged Navier–Stokes equations, the basic equations for the large eddy simulation of turbulent flows, if the filter is non-uniform or asymmetric (skewed) with non-constant skewness. These errors need to be analyzed for turbulent flow fields,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2007-09, Vol.206 (2), p.1027-1045
Main Authors: Berselli, Luigi C., Grisanti, Carlo R., John, Volker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commutation errors arise in the derivation of the space averaged Navier–Stokes equations, the basic equations for the large eddy simulation of turbulent flows, if the filter is non-uniform or asymmetric (skewed) with non-constant skewness. These errors need to be analyzed for turbulent flow fields, where one expects a limited regularity of the solution. This paper studies the order of convergence of commutation errors, as the filter width tends to zero, for functions with low regularity. Several convergence results are proved and it is also shown that convergence may fail (or its order decreases) if the functions become less smooth. The main results are those dealing with Hölder–continuous functions and with functions having singularities. The sharpness of the analytic results is confirmed with numerical illustrations.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2006.09.011