Loading…
From data to a validated score-based LR system: A practitioner’s guide
Likelihood ratios (LRs) are a useful measure of evidential strength. In forensic casework consisting of a flow of cases with essentially the same question and the same analysis method, it is feasible to construct an ‘LR system’, that is, an automated procedure that has the observations as input and...
Saved in:
Published in: | Forensic science international 2024-04, Vol.357, p.111994-111994, Article 111994 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3 |
container_end_page | 111994 |
container_issue | |
container_start_page | 111994 |
container_title | Forensic science international |
container_volume | 357 |
creator | Leegwater, Anna Jeannette Vergeer, Peter Alberink, Ivo van der Ham, Leen V. van de Wetering, Judith El Harchaoui, Rachid Bosma, Wauter Ypma, Rolf J.F. Sjerps, Marjan J. |
description | Likelihood ratios (LRs) are a useful measure of evidential strength. In forensic casework consisting of a flow of cases with essentially the same question and the same analysis method, it is feasible to construct an ‘LR system’, that is, an automated procedure that has the observations as input and an LR as output. This paper is aimed at practitioners interested in building their own LR systems. It gives an overview of the different steps needed to get to a validated LR system from data. The paper is accompanied by a notebook that illustrates each step with an example using glass data. The notebook introduces open-source software in Python constructed by NFI (Netherlands Forensic Institute) data scientists and statisticians.
[Display omitted]
•We present a procedure to transform raw data into a validated LR system for forensic casework.•Follow 8 easy-to-understand steps, each illustrated with forensic example data.•Technical details and current debates are explained in an appendix.•Explore LiR, the Python-based open-source library for LR calculations, through an accompanying notebook.•Build your own LR system using your data with this comprehensive set of tools!. |
doi_str_mv | 10.1016/j.forsciint.2024.111994 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2985793537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379073824000756</els_id><sourcerecordid>2985793537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3</originalsourceid><addsrcrecordid>eNqFkc9qVDEUh4NY7Fh9BQ246eZOT5Kbm8TdUKwVBgTRdci_Kxnm3oxJbqE7X6Ov55M0Zdou3HSVHPjOL-fkQ-gjgTUBMlzs1mPKxcU41zUF2q8JIUr1r9CKSEG7gUr2Gq2ACdWBYPIUvS1lBwCc0-ENOmWSU8ooX6Hrq5wm7E01uCZs8I3Zx1YFj4tLOXTWlHbf_sDlttQwfcYbfMjG1VhjmkP-9_eu4N9L9OEdOhnNvoT3j-cZ-nX15efldbf9_vXb5WbbuV6S2gVOCe2tIUJxBUL11o5ArPRCtjltK4X1pGe8NyOAEkM_SnCeBSGoAWvZGTo_5h5y-rOEUvUUiwv7vZlDWopmhLetoVfwIkqV5EKxxjf003_oLi15botoBgyGhirSKHGkXE6l5DDqQ46TybeagH7wonf62Yt-8KKPXlrnh8f8xU7BP_c9iWjA5giE9nc3MWTdUsLsgo85uKp9ii8-cg9T-aEJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030629891</pqid></control><display><type>article</type><title>From data to a validated score-based LR system: A practitioner’s guide</title><source>Elsevier</source><creator>Leegwater, Anna Jeannette ; Vergeer, Peter ; Alberink, Ivo ; van der Ham, Leen V. ; van de Wetering, Judith ; El Harchaoui, Rachid ; Bosma, Wauter ; Ypma, Rolf J.F. ; Sjerps, Marjan J.</creator><creatorcontrib>Leegwater, Anna Jeannette ; Vergeer, Peter ; Alberink, Ivo ; van der Ham, Leen V. ; van de Wetering, Judith ; El Harchaoui, Rachid ; Bosma, Wauter ; Ypma, Rolf J.F. ; Sjerps, Marjan J.</creatorcontrib><description>Likelihood ratios (LRs) are a useful measure of evidential strength. In forensic casework consisting of a flow of cases with essentially the same question and the same analysis method, it is feasible to construct an ‘LR system’, that is, an automated procedure that has the observations as input and an LR as output. This paper is aimed at practitioners interested in building their own LR systems. It gives an overview of the different steps needed to get to a validated LR system from data. The paper is accompanied by a notebook that illustrates each step with an example using glass data. The notebook introduces open-source software in Python constructed by NFI (Netherlands Forensic Institute) data scientists and statisticians.
[Display omitted]
•We present a procedure to transform raw data into a validated LR system for forensic casework.•Follow 8 easy-to-understand steps, each illustrated with forensic example data.•Technical details and current debates are explained in an appendix.•Explore LiR, the Python-based open-source library for LR calculations, through an accompanying notebook.•Build your own LR system using your data with this comprehensive set of tools!.</description><identifier>ISSN: 0379-0738</identifier><identifier>EISSN: 1872-6283</identifier><identifier>DOI: 10.1016/j.forsciint.2024.111994</identifier><identifier>PMID: 38522325</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>automation ; Datasets ; Evidential strength ; Forensic data ; Forensic science ; forensic sciences ; glass ; Likelihood ratio ; LR system ; Open source software ; Python ; Score-based ; Validation ; Variables</subject><ispartof>Forensic science international, 2024-04, Vol.357, p.111994-111994, Article 111994</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2024. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3</citedby><cites>FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38522325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leegwater, Anna Jeannette</creatorcontrib><creatorcontrib>Vergeer, Peter</creatorcontrib><creatorcontrib>Alberink, Ivo</creatorcontrib><creatorcontrib>van der Ham, Leen V.</creatorcontrib><creatorcontrib>van de Wetering, Judith</creatorcontrib><creatorcontrib>El Harchaoui, Rachid</creatorcontrib><creatorcontrib>Bosma, Wauter</creatorcontrib><creatorcontrib>Ypma, Rolf J.F.</creatorcontrib><creatorcontrib>Sjerps, Marjan J.</creatorcontrib><title>From data to a validated score-based LR system: A practitioner’s guide</title><title>Forensic science international</title><addtitle>Forensic Sci Int</addtitle><description>Likelihood ratios (LRs) are a useful measure of evidential strength. In forensic casework consisting of a flow of cases with essentially the same question and the same analysis method, it is feasible to construct an ‘LR system’, that is, an automated procedure that has the observations as input and an LR as output. This paper is aimed at practitioners interested in building their own LR systems. It gives an overview of the different steps needed to get to a validated LR system from data. The paper is accompanied by a notebook that illustrates each step with an example using glass data. The notebook introduces open-source software in Python constructed by NFI (Netherlands Forensic Institute) data scientists and statisticians.
[Display omitted]
•We present a procedure to transform raw data into a validated LR system for forensic casework.•Follow 8 easy-to-understand steps, each illustrated with forensic example data.•Technical details and current debates are explained in an appendix.•Explore LiR, the Python-based open-source library for LR calculations, through an accompanying notebook.•Build your own LR system using your data with this comprehensive set of tools!.</description><subject>automation</subject><subject>Datasets</subject><subject>Evidential strength</subject><subject>Forensic data</subject><subject>Forensic science</subject><subject>forensic sciences</subject><subject>glass</subject><subject>Likelihood ratio</subject><subject>LR system</subject><subject>Open source software</subject><subject>Python</subject><subject>Score-based</subject><subject>Validation</subject><subject>Variables</subject><issn>0379-0738</issn><issn>1872-6283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc9qVDEUh4NY7Fh9BQ246eZOT5Kbm8TdUKwVBgTRdci_Kxnm3oxJbqE7X6Ov55M0Zdou3HSVHPjOL-fkQ-gjgTUBMlzs1mPKxcU41zUF2q8JIUr1r9CKSEG7gUr2Gq2ACdWBYPIUvS1lBwCc0-ENOmWSU8ooX6Hrq5wm7E01uCZs8I3Zx1YFj4tLOXTWlHbf_sDlttQwfcYbfMjG1VhjmkP-9_eu4N9L9OEdOhnNvoT3j-cZ-nX15efldbf9_vXb5WbbuV6S2gVOCe2tIUJxBUL11o5ArPRCtjltK4X1pGe8NyOAEkM_SnCeBSGoAWvZGTo_5h5y-rOEUvUUiwv7vZlDWopmhLetoVfwIkqV5EKxxjf003_oLi15botoBgyGhirSKHGkXE6l5DDqQ46TybeagH7wonf62Yt-8KKPXlrnh8f8xU7BP_c9iWjA5giE9nc3MWTdUsLsgo85uKp9ii8-cg9T-aEJ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Leegwater, Anna Jeannette</creator><creator>Vergeer, Peter</creator><creator>Alberink, Ivo</creator><creator>van der Ham, Leen V.</creator><creator>van de Wetering, Judith</creator><creator>El Harchaoui, Rachid</creator><creator>Bosma, Wauter</creator><creator>Ypma, Rolf J.F.</creator><creator>Sjerps, Marjan J.</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240401</creationdate><title>From data to a validated score-based LR system: A practitioner’s guide</title><author>Leegwater, Anna Jeannette ; Vergeer, Peter ; Alberink, Ivo ; van der Ham, Leen V. ; van de Wetering, Judith ; El Harchaoui, Rachid ; Bosma, Wauter ; Ypma, Rolf J.F. ; Sjerps, Marjan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automation</topic><topic>Datasets</topic><topic>Evidential strength</topic><topic>Forensic data</topic><topic>Forensic science</topic><topic>forensic sciences</topic><topic>glass</topic><topic>Likelihood ratio</topic><topic>LR system</topic><topic>Open source software</topic><topic>Python</topic><topic>Score-based</topic><topic>Validation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leegwater, Anna Jeannette</creatorcontrib><creatorcontrib>Vergeer, Peter</creatorcontrib><creatorcontrib>Alberink, Ivo</creatorcontrib><creatorcontrib>van der Ham, Leen V.</creatorcontrib><creatorcontrib>van de Wetering, Judith</creatorcontrib><creatorcontrib>El Harchaoui, Rachid</creatorcontrib><creatorcontrib>Bosma, Wauter</creatorcontrib><creatorcontrib>Ypma, Rolf J.F.</creatorcontrib><creatorcontrib>Sjerps, Marjan J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Forensic science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leegwater, Anna Jeannette</au><au>Vergeer, Peter</au><au>Alberink, Ivo</au><au>van der Ham, Leen V.</au><au>van de Wetering, Judith</au><au>El Harchaoui, Rachid</au><au>Bosma, Wauter</au><au>Ypma, Rolf J.F.</au><au>Sjerps, Marjan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From data to a validated score-based LR system: A practitioner’s guide</atitle><jtitle>Forensic science international</jtitle><addtitle>Forensic Sci Int</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>357</volume><spage>111994</spage><epage>111994</epage><pages>111994-111994</pages><artnum>111994</artnum><issn>0379-0738</issn><eissn>1872-6283</eissn><abstract>Likelihood ratios (LRs) are a useful measure of evidential strength. In forensic casework consisting of a flow of cases with essentially the same question and the same analysis method, it is feasible to construct an ‘LR system’, that is, an automated procedure that has the observations as input and an LR as output. This paper is aimed at practitioners interested in building their own LR systems. It gives an overview of the different steps needed to get to a validated LR system from data. The paper is accompanied by a notebook that illustrates each step with an example using glass data. The notebook introduces open-source software in Python constructed by NFI (Netherlands Forensic Institute) data scientists and statisticians.
[Display omitted]
•We present a procedure to transform raw data into a validated LR system for forensic casework.•Follow 8 easy-to-understand steps, each illustrated with forensic example data.•Technical details and current debates are explained in an appendix.•Explore LiR, the Python-based open-source library for LR calculations, through an accompanying notebook.•Build your own LR system using your data with this comprehensive set of tools!.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>38522325</pmid><doi>10.1016/j.forsciint.2024.111994</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-0738 |
ispartof | Forensic science international, 2024-04, Vol.357, p.111994-111994, Article 111994 |
issn | 0379-0738 1872-6283 |
language | eng |
recordid | cdi_proquest_miscellaneous_2985793537 |
source | Elsevier |
subjects | automation Datasets Evidential strength Forensic data Forensic science forensic sciences glass Likelihood ratio LR system Open source software Python Score-based Validation Variables |
title | From data to a validated score-based LR system: A practitioner’s guide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20data%20to%20a%20validated%20score-based%20LR%20system:%20A%20practitioner%E2%80%99s%20guide&rft.jtitle=Forensic%20science%20international&rft.au=Leegwater,%20Anna%20Jeannette&rft.date=2024-04-01&rft.volume=357&rft.spage=111994&rft.epage=111994&rft.pages=111994-111994&rft.artnum=111994&rft.issn=0379-0738&rft.eissn=1872-6283&rft_id=info:doi/10.1016/j.forsciint.2024.111994&rft_dat=%3Cproquest_cross%3E2985793537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-e52124ba179590794bbf01b8d78738b4bb7bd14354af009764f80cd3e772a0bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3030629891&rft_id=info:pmid/38522325&rfr_iscdi=true |