Loading…

Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues

This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually...

Full description

Saved in:
Bibliographic Details
Published in:Journal of elasticity 2017-12, Vol.129 (1-2), p.69-105
Main Authors: Nims, Robert J., Ateshian, Gerard A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023
cites cdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023
container_end_page 105
container_issue 1-2
container_start_page 69
container_title Journal of elasticity
container_volume 129
creator Nims, Robert J.
Ateshian, Gerard A.
description This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.
doi_str_mv 10.1007/s10659-017-9630-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2985798001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936441443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</originalsourceid><addsrcrecordid>eNp1kMtOHDEQRS0UxEyAD2ATWcqGjZPyq20vwwiSSCDEa2153O6JRz1tsLsj8vcxaoiiSFnV4p66VToInVD4RAHU50KhkYYAVcQ0HIjZQ0sqFSes0fQdWgJXgnDJ5QK9L2ULAEYLOEALriXj2oglurkNzo_xZ8CrNJQxuziEFl_F53HKoeAuZXyV2tDHYYPHHwHfpT7W3I05PuPU4bOY-rSJ3vX4PpYyhXKE9jvXl3D8Og_Rw8X5_eobubz--n315ZJ4rthIhGSdU0IKzXzDnG4pa0RowbHWuVZ6zxRdu3UA74w0zK-1CaYmCirfAuOH6HTufczpqd4d7S4WH_reDSFNxTKjpTIagFb04z_oNk15qN9ZangjBBWCV4rOlM-plBw6-5jjzuVfloJ98W1n37b6ti--rak7H16bp_UutH823gRXgM1AqdGwCfmv0_9t_Q3KcYqn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936441443</pqid></control><display><type>article</type><title>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</title><source>Springer Link</source><creator>Nims, Robert J. ; Ateshian, Gerard A.</creator><creatorcontrib>Nims, Robert J. ; Ateshian, Gerard A.</creatorcontrib><description>This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-017-9630-9</identifier><identifier>PMID: 38523894</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Chemical bonds ; Classical Mechanics ; Energy dissipation ; Free energy ; Modelling ; Physics ; Physics and Astronomy ; Reaction kinetics ; Recruitment ; Reforming ; Tissues ; Viscoelasticity</subject><ispartof>Journal of elasticity, 2017-12, Vol.129 (1-2), p.69-105</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Journal of Elasticity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</citedby><cites>FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</cites><orcidid>0000-0003-4218-607X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38523894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nims, Robert J.</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><title>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><addtitle>J Elast</addtitle><description>This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.</description><subject>Automotive Engineering</subject><subject>Chemical bonds</subject><subject>Classical Mechanics</subject><subject>Energy dissipation</subject><subject>Free energy</subject><subject>Modelling</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reaction kinetics</subject><subject>Recruitment</subject><subject>Reforming</subject><subject>Tissues</subject><subject>Viscoelasticity</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOHDEQRS0UxEyAD2ATWcqGjZPyq20vwwiSSCDEa2153O6JRz1tsLsj8vcxaoiiSFnV4p66VToInVD4RAHU50KhkYYAVcQ0HIjZQ0sqFSes0fQdWgJXgnDJ5QK9L2ULAEYLOEALriXj2oglurkNzo_xZ8CrNJQxuziEFl_F53HKoeAuZXyV2tDHYYPHHwHfpT7W3I05PuPU4bOY-rSJ3vX4PpYyhXKE9jvXl3D8Og_Rw8X5_eobubz--n315ZJ4rthIhGSdU0IKzXzDnG4pa0RowbHWuVZ6zxRdu3UA74w0zK-1CaYmCirfAuOH6HTufczpqd4d7S4WH_reDSFNxTKjpTIagFb04z_oNk15qN9ZangjBBWCV4rOlM-plBw6-5jjzuVfloJ98W1n37b6ti--rak7H16bp_UutH823gRXgM1AqdGwCfmv0_9t_Q3KcYqn</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Nims, Robert J.</creator><creator>Ateshian, Gerard A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4218-607X</orcidid></search><sort><creationdate>20171201</creationdate><title>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</title><author>Nims, Robert J. ; Ateshian, Gerard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Chemical bonds</topic><topic>Classical Mechanics</topic><topic>Energy dissipation</topic><topic>Free energy</topic><topic>Modelling</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reaction kinetics</topic><topic>Recruitment</topic><topic>Reforming</topic><topic>Tissues</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nims, Robert J.</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nims, Robert J.</au><au>Ateshian, Gerard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><addtitle>J Elast</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>129</volume><issue>1-2</issue><spage>69</spage><epage>105</epage><pages>69-105</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38523894</pmid><doi>10.1007/s10659-017-9630-9</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-4218-607X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2017-12, Vol.129 (1-2), p.69-105
issn 0374-3535
1573-2681
language eng
recordid cdi_proquest_miscellaneous_2985798001
source Springer Link
subjects Automotive Engineering
Chemical bonds
Classical Mechanics
Energy dissipation
Free energy
Modelling
Physics
Physics and Astronomy
Reaction kinetics
Recruitment
Reforming
Tissues
Viscoelasticity
title Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Constrained%20Mixtures%20for%20Modeling%20the%20Solid%20Matrix%20of%20Biological%20Tissues&rft.jtitle=Journal%20of%20elasticity&rft.au=Nims,%20Robert%20J.&rft.date=2017-12-01&rft.volume=129&rft.issue=1-2&rft.spage=69&rft.epage=105&rft.pages=69-105&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-017-9630-9&rft_dat=%3Cproquest_cross%3E1936441443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936441443&rft_id=info:pmid/38523894&rfr_iscdi=true