Loading…
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues
This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually...
Saved in:
Published in: | Journal of elasticity 2017-12, Vol.129 (1-2), p.69-105 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023 |
container_end_page | 105 |
container_issue | 1-2 |
container_start_page | 69 |
container_title | Journal of elasticity |
container_volume | 129 |
creator | Nims, Robert J. Ateshian, Gerard A. |
description | This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues. |
doi_str_mv | 10.1007/s10659-017-9630-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2985798001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936441443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</originalsourceid><addsrcrecordid>eNp1kMtOHDEQRS0UxEyAD2ATWcqGjZPyq20vwwiSSCDEa2153O6JRz1tsLsj8vcxaoiiSFnV4p66VToInVD4RAHU50KhkYYAVcQ0HIjZQ0sqFSes0fQdWgJXgnDJ5QK9L2ULAEYLOEALriXj2oglurkNzo_xZ8CrNJQxuziEFl_F53HKoeAuZXyV2tDHYYPHHwHfpT7W3I05PuPU4bOY-rSJ3vX4PpYyhXKE9jvXl3D8Og_Rw8X5_eobubz--n315ZJ4rthIhGSdU0IKzXzDnG4pa0RowbHWuVZ6zxRdu3UA74w0zK-1CaYmCirfAuOH6HTufczpqd4d7S4WH_reDSFNxTKjpTIagFb04z_oNk15qN9ZangjBBWCV4rOlM-plBw6-5jjzuVfloJ98W1n37b6ti--rak7H16bp_UutH823gRXgM1AqdGwCfmv0_9t_Q3KcYqn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936441443</pqid></control><display><type>article</type><title>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</title><source>Springer Link</source><creator>Nims, Robert J. ; Ateshian, Gerard A.</creator><creatorcontrib>Nims, Robert J. ; Ateshian, Gerard A.</creatorcontrib><description>This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-017-9630-9</identifier><identifier>PMID: 38523894</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Chemical bonds ; Classical Mechanics ; Energy dissipation ; Free energy ; Modelling ; Physics ; Physics and Astronomy ; Reaction kinetics ; Recruitment ; Reforming ; Tissues ; Viscoelasticity</subject><ispartof>Journal of elasticity, 2017-12, Vol.129 (1-2), p.69-105</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Journal of Elasticity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</citedby><cites>FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</cites><orcidid>0000-0003-4218-607X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38523894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nims, Robert J.</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><title>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><addtitle>J Elast</addtitle><description>This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.</description><subject>Automotive Engineering</subject><subject>Chemical bonds</subject><subject>Classical Mechanics</subject><subject>Energy dissipation</subject><subject>Free energy</subject><subject>Modelling</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reaction kinetics</subject><subject>Recruitment</subject><subject>Reforming</subject><subject>Tissues</subject><subject>Viscoelasticity</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOHDEQRS0UxEyAD2ATWcqGjZPyq20vwwiSSCDEa2153O6JRz1tsLsj8vcxaoiiSFnV4p66VToInVD4RAHU50KhkYYAVcQ0HIjZQ0sqFSes0fQdWgJXgnDJ5QK9L2ULAEYLOEALriXj2oglurkNzo_xZ8CrNJQxuziEFl_F53HKoeAuZXyV2tDHYYPHHwHfpT7W3I05PuPU4bOY-rSJ3vX4PpYyhXKE9jvXl3D8Og_Rw8X5_eobubz--n315ZJ4rthIhGSdU0IKzXzDnG4pa0RowbHWuVZ6zxRdu3UA74w0zK-1CaYmCirfAuOH6HTufczpqd4d7S4WH_reDSFNxTKjpTIagFb04z_oNk15qN9ZangjBBWCV4rOlM-plBw6-5jjzuVfloJ98W1n37b6ti--rak7H16bp_UutH823gRXgM1AqdGwCfmv0_9t_Q3KcYqn</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Nims, Robert J.</creator><creator>Ateshian, Gerard A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4218-607X</orcidid></search><sort><creationdate>20171201</creationdate><title>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</title><author>Nims, Robert J. ; Ateshian, Gerard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Chemical bonds</topic><topic>Classical Mechanics</topic><topic>Energy dissipation</topic><topic>Free energy</topic><topic>Modelling</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reaction kinetics</topic><topic>Recruitment</topic><topic>Reforming</topic><topic>Tissues</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nims, Robert J.</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nims, Robert J.</au><au>Ateshian, Gerard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><addtitle>J Elast</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>129</volume><issue>1-2</issue><spage>69</spage><epage>105</epage><pages>69-105</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material’s anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38523894</pmid><doi>10.1007/s10659-017-9630-9</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-4218-607X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-3535 |
ispartof | Journal of elasticity, 2017-12, Vol.129 (1-2), p.69-105 |
issn | 0374-3535 1573-2681 |
language | eng |
recordid | cdi_proquest_miscellaneous_2985798001 |
source | Springer Link |
subjects | Automotive Engineering Chemical bonds Classical Mechanics Energy dissipation Free energy Modelling Physics Physics and Astronomy Reaction kinetics Recruitment Reforming Tissues Viscoelasticity |
title | Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Constrained%20Mixtures%20for%20Modeling%20the%20Solid%20Matrix%20of%20Biological%20Tissues&rft.jtitle=Journal%20of%20elasticity&rft.au=Nims,%20Robert%20J.&rft.date=2017-12-01&rft.volume=129&rft.issue=1-2&rft.spage=69&rft.epage=105&rft.pages=69-105&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-017-9630-9&rft_dat=%3Cproquest_cross%3E1936441443%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-452fa745482c62a8d1264ed0a2daad5cc271babe0ca9592cb89e9aad702c6d023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936441443&rft_id=info:pmid/38523894&rfr_iscdi=true |