Loading…
Numerical and experimental fatigue crack growth analysis in mode-I for repaired aluminum panels using composite material
Crack-front shape is an important parameter influencing the stress intensity factor and crack propagation rate in asymmetric repaired panels. In this study, the numerical and experimental fatigue crack growth behaviour of centrally cracked aluminum panels in mode-I condition repaired with single-sid...
Saved in:
Published in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2007-04, Vol.38 (4), p.1141-1148 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Crack-front shape is an important parameter influencing the stress intensity factor and crack propagation rate in asymmetric repaired panels. In this study, the numerical and experimental fatigue crack growth behaviour of centrally cracked aluminum panels in mode-I condition repaired with single-side composite patches are investigated. It is shown that the crack growths non-uniformly from its initial location through the thickness of a single-side repaired panel. There is a good agreement between the propagated crack-front shapes obtained from finite element analysis with those obtained from the experiments for various repaired panels with different patch thicknesses. Furthermore, effects of plate and patch thickness on the crack growth life of the repaired panels are investigated. The experimental results show that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extend about 21–35% using a 4 layers patch. Implementing of 8 and 16 layers patches has not a significant effect on the life extension of thick panels with respect to the 4 layers patch life. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2006.06.003 |