Loading…
Use of graft-modified membranes for water treatment
Membranes with designed surface and filtration properties were prepared by grafting and adsorption of polyelectrolyte multilayer systems on membrane surfaces using the layer-by-layer electrostatic self-assembly technique. Microfiltration membranes with a first polyelectrolyte layer grafted onto the...
Saved in:
Published in: | Water science & technology. Water supply 2003, Vol.3 (5-6), p.385-392 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 392 |
container_issue | 5-6 |
container_start_page | 385 |
container_title | Water science & technology. Water supply |
container_volume | 3 |
creator | Meier-Haack, J Carroll, T |
description | Membranes with designed surface and filtration properties were prepared by grafting and adsorption of polyelectrolyte multilayer systems on membrane surfaces using the layer-by-layer electrostatic self-assembly technique. Microfiltration membranes with a first polyelectrolyte layer grafted onto the surface showed excellent stability during the filtration process. Although a two-fold higher permeate flux was observed for a three-layer polyelectrolyte complex membrane compared to a just grafted one, the protein retention did not change remarkably. Additionally, a reduced protein adsorption was detected by in-situ ATRFTIR spectroscopy for the case of repulsive electrostatic forces between the substrate and the protein under applied test conditions. |
doi_str_mv | 10.2166/ws.2003.0193 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29880855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16165579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-45424d6d0288185f3f027f14c1f3e54261b80ae0dfbcd830837ba04de12163273</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMfYK29-QMWBE9uncl3jiJ-QcGLPYfsbiIt3W5NthT_vVnryUt7Gob3YWbeeQm5RphSlPJ-l6YUgE0BDTshI5SgSlBGn5KJURo1Z8xwZuTZryZLo7i5IJcpLQGoUkhHhM2TL7pQfEYX-rLtmkVY-KZofVtFt_apCF0sdq73seijd33r1_0VOQ9ulfzkr47J_Pnp4_G1nL2_vD0-zMqaat2XXHDKG9lA7lCLwEJeGpDXGJjPmsRKg_PQhKpuNAPNVOWANx6zOUYVG5Pb_dxN7L62PvW2XaTar1b5sG6bLDVagxbiCFAoldHDIBiupDQHQZQohVBHgFxqKnAwc_MPXHbbuM7_s5hDQqqEppm621N17FKKPthNXLQuflsEO2Rud8OVwOyQOfsBZm-Y5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943127582</pqid></control><display><type>article</type><title>Use of graft-modified membranes for water treatment</title><source>Alma/SFX Local Collection</source><creator>Meier-Haack, J ; Carroll, T</creator><contributor>Hagmeyer, G ; Schippers, JC ; Gimbel, R (eds)</contributor><creatorcontrib>Meier-Haack, J ; Carroll, T ; Hagmeyer, G ; Schippers, JC ; Gimbel, R (eds)</creatorcontrib><description>Membranes with designed surface and filtration properties were prepared by grafting and adsorption of polyelectrolyte multilayer systems on membrane surfaces using the layer-by-layer electrostatic self-assembly technique. Microfiltration membranes with a first polyelectrolyte layer grafted onto the surface showed excellent stability during the filtration process. Although a two-fold higher permeate flux was observed for a three-layer polyelectrolyte complex membrane compared to a just grafted one, the protein retention did not change remarkably. Additionally, a reduced protein adsorption was detected by in-situ ATRFTIR spectroscopy for the case of repulsive electrostatic forces between the substrate and the protein under applied test conditions.</description><identifier>ISSN: 1606-9749</identifier><identifier>ISBN: 9781843394396</identifier><identifier>ISBN: 1843394391</identifier><identifier>EISSN: 1607-0798</identifier><identifier>DOI: 10.2166/ws.2003.0193</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Adsorption ; Filtration ; Grafting ; Membranes ; Microfiltration ; Polyelectrolytes ; Protein adsorption ; Proteins ; Self-assembly ; Surface chemistry ; Surface stability ; Water purification ; Water treatment</subject><ispartof>Water science & technology. Water supply, 2003, Vol.3 (5-6), p.385-392</ispartof><rights>Copyright IWA Publishing Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,4010,4036,4037,27900,27901,27902</link.rule.ids></links><search><contributor>Hagmeyer, G</contributor><contributor>Schippers, JC</contributor><contributor>Gimbel, R (eds)</contributor><creatorcontrib>Meier-Haack, J</creatorcontrib><creatorcontrib>Carroll, T</creatorcontrib><title>Use of graft-modified membranes for water treatment</title><title>Water science & technology. Water supply</title><description>Membranes with designed surface and filtration properties were prepared by grafting and adsorption of polyelectrolyte multilayer systems on membrane surfaces using the layer-by-layer electrostatic self-assembly technique. Microfiltration membranes with a first polyelectrolyte layer grafted onto the surface showed excellent stability during the filtration process. Although a two-fold higher permeate flux was observed for a three-layer polyelectrolyte complex membrane compared to a just grafted one, the protein retention did not change remarkably. Additionally, a reduced protein adsorption was detected by in-situ ATRFTIR spectroscopy for the case of repulsive electrostatic forces between the substrate and the protein under applied test conditions.</description><subject>Adsorption</subject><subject>Filtration</subject><subject>Grafting</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Polyelectrolytes</subject><subject>Protein adsorption</subject><subject>Proteins</subject><subject>Self-assembly</subject><subject>Surface chemistry</subject><subject>Surface stability</subject><subject>Water purification</subject><subject>Water treatment</subject><issn>1606-9749</issn><issn>1607-0798</issn><isbn>9781843394396</isbn><isbn>1843394391</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMfYK29-QMWBE9uncl3jiJ-QcGLPYfsbiIt3W5NthT_vVnryUt7Gob3YWbeeQm5RphSlPJ-l6YUgE0BDTshI5SgSlBGn5KJURo1Z8xwZuTZryZLo7i5IJcpLQGoUkhHhM2TL7pQfEYX-rLtmkVY-KZofVtFt_apCF0sdq73seijd33r1_0VOQ9ulfzkr47J_Pnp4_G1nL2_vD0-zMqaat2XXHDKG9lA7lCLwEJeGpDXGJjPmsRKg_PQhKpuNAPNVOWANx6zOUYVG5Pb_dxN7L62PvW2XaTar1b5sG6bLDVagxbiCFAoldHDIBiupDQHQZQohVBHgFxqKnAwc_MPXHbbuM7_s5hDQqqEppm621N17FKKPthNXLQuflsEO2Rud8OVwOyQOfsBZm-Y5Q</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Meier-Haack, J</creator><creator>Carroll, T</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7ST</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2003</creationdate><title>Use of graft-modified membranes for water treatment</title><author>Meier-Haack, J ; Carroll, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-45424d6d0288185f3f027f14c1f3e54261b80ae0dfbcd830837ba04de12163273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adsorption</topic><topic>Filtration</topic><topic>Grafting</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Polyelectrolytes</topic><topic>Protein adsorption</topic><topic>Proteins</topic><topic>Self-assembly</topic><topic>Surface chemistry</topic><topic>Surface stability</topic><topic>Water purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meier-Haack, J</creatorcontrib><creatorcontrib>Carroll, T</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Water science & technology. Water supply</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meier-Haack, J</au><au>Carroll, T</au><au>Hagmeyer, G</au><au>Schippers, JC</au><au>Gimbel, R (eds)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of graft-modified membranes for water treatment</atitle><jtitle>Water science & technology. Water supply</jtitle><date>2003</date><risdate>2003</risdate><volume>3</volume><issue>5-6</issue><spage>385</spage><epage>392</epage><pages>385-392</pages><issn>1606-9749</issn><eissn>1607-0798</eissn><isbn>9781843394396</isbn><isbn>1843394391</isbn><abstract>Membranes with designed surface and filtration properties were prepared by grafting and adsorption of polyelectrolyte multilayer systems on membrane surfaces using the layer-by-layer electrostatic self-assembly technique. Microfiltration membranes with a first polyelectrolyte layer grafted onto the surface showed excellent stability during the filtration process. Although a two-fold higher permeate flux was observed for a three-layer polyelectrolyte complex membrane compared to a just grafted one, the protein retention did not change remarkably. Additionally, a reduced protein adsorption was detected by in-situ ATRFTIR spectroscopy for the case of repulsive electrostatic forces between the substrate and the protein under applied test conditions.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/ws.2003.0193</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1606-9749 |
ispartof | Water science & technology. Water supply, 2003, Vol.3 (5-6), p.385-392 |
issn | 1606-9749 1607-0798 |
language | eng |
recordid | cdi_proquest_miscellaneous_29880855 |
source | Alma/SFX Local Collection |
subjects | Adsorption Filtration Grafting Membranes Microfiltration Polyelectrolytes Protein adsorption Proteins Self-assembly Surface chemistry Surface stability Water purification Water treatment |
title | Use of graft-modified membranes for water treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20graft-modified%20membranes%20for%20water%20treatment&rft.jtitle=Water%20science%20&%20technology.%20Water%20supply&rft.au=Meier-Haack,%20J&rft.date=2003&rft.volume=3&rft.issue=5-6&rft.spage=385&rft.epage=392&rft.pages=385-392&rft.issn=1606-9749&rft.eissn=1607-0798&rft.isbn=9781843394396&rft.isbn_list=1843394391&rft_id=info:doi/10.2166/ws.2003.0193&rft_dat=%3Cproquest_cross%3E16165579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-45424d6d0288185f3f027f14c1f3e54261b80ae0dfbcd830837ba04de12163273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943127582&rft_id=info:pmid/&rfr_iscdi=true |