Loading…
Modelling of repeatability phenomena using the stochastic ellipsoid approach
A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the s...
Saved in:
Published in: | Robotica 2006-07, Vol.24 (4), p.477-490 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53 |
---|---|
cites | |
container_end_page | 490 |
container_issue | 4 |
container_start_page | 477 |
container_title | Robotica |
container_volume | 24 |
creator | Brethé, Jean-François Vasselin, Eric Lefebvre, Dimitri Dakyo, Brayima |
description | A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability. |
doi_str_mv | 10.1017/S0263574705002481 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29896174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574705002481</cupid><sourcerecordid>29896174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLfig2_V_Gmb9FGGbmKnDOdzSNt0zWybmqTgvr0pGwqKT5fL-Z17DheASwRvEET09hXihMQ0ojCGEEcMHYEJipI0ZEnCjsFklMNRPwVn1m4hRARFdAKypS5l06huE-gqMLKXwolcNcrtgr6WnW5lJ4LBjoCrZWCdLmphnSqC0dZbrcpA9L3RoqjPwUklGisvDnMK3h7u17NFmL3MH2d3WVgQFrswRThJC5KXkS9BUSlQzrwQwxyJSkKcYwJxxUqIaYqpjEkZE5anRZyTsqr8PgXX-7s-9mOQ1vFW2cL3EZ3Ug-U4ZWmCaOTBq1_gVg-m8904RogxQqPUQ2gPFUZba2TFe6NaYXYcQT4-l_95rveEe4-yTn5-G4R55wklNObJfMUzOF8vV4sn_ux5csgQbW5UuZE_Tf5P-QKZGYpx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211883749</pqid></control><display><type>article</type><title>Modelling of repeatability phenomena using the stochastic ellipsoid approach</title><source>Cambridge University Press</source><creator>Brethé, Jean-François ; Vasselin, Eric ; Lefebvre, Dimitri ; Dakyo, Brayima</creator><creatorcontrib>Brethé, Jean-François ; Vasselin, Eric ; Lefebvre, Dimitri ; Dakyo, Brayima</creatorcontrib><description>A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574705002481</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Industrial robots ; Repeatability modelling ; Stochastic ellipsoid</subject><ispartof>Robotica, 2006-07, Vol.24 (4), p.477-490</ispartof><rights>2005 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574705002481/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,72711</link.rule.ids></links><search><creatorcontrib>Brethé, Jean-François</creatorcontrib><creatorcontrib>Vasselin, Eric</creatorcontrib><creatorcontrib>Lefebvre, Dimitri</creatorcontrib><creatorcontrib>Dakyo, Brayima</creatorcontrib><title>Modelling of repeatability phenomena using the stochastic ellipsoid approach</title><title>Robotica</title><addtitle>Robotica</addtitle><description>A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.</description><subject>Industrial robots</subject><subject>Repeatability modelling</subject><subject>Stochastic ellipsoid</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLfig2_V_Gmb9FGGbmKnDOdzSNt0zWybmqTgvr0pGwqKT5fL-Z17DheASwRvEET09hXihMQ0ojCGEEcMHYEJipI0ZEnCjsFklMNRPwVn1m4hRARFdAKypS5l06huE-gqMLKXwolcNcrtgr6WnW5lJ4LBjoCrZWCdLmphnSqC0dZbrcpA9L3RoqjPwUklGisvDnMK3h7u17NFmL3MH2d3WVgQFrswRThJC5KXkS9BUSlQzrwQwxyJSkKcYwJxxUqIaYqpjEkZE5anRZyTsqr8PgXX-7s-9mOQ1vFW2cL3EZ3Ug-U4ZWmCaOTBq1_gVg-m8904RogxQqPUQ2gPFUZba2TFe6NaYXYcQT4-l_95rveEe4-yTn5-G4R55wklNObJfMUzOF8vV4sn_ux5csgQbW5UuZE_Tf5P-QKZGYpx</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Brethé, Jean-François</creator><creator>Vasselin, Eric</creator><creator>Lefebvre, Dimitri</creator><creator>Dakyo, Brayima</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200607</creationdate><title>Modelling of repeatability phenomena using the stochastic ellipsoid approach</title><author>Brethé, Jean-François ; Vasselin, Eric ; Lefebvre, Dimitri ; Dakyo, Brayima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Industrial robots</topic><topic>Repeatability modelling</topic><topic>Stochastic ellipsoid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brethé, Jean-François</creatorcontrib><creatorcontrib>Vasselin, Eric</creatorcontrib><creatorcontrib>Lefebvre, Dimitri</creatorcontrib><creatorcontrib>Dakyo, Brayima</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brethé, Jean-François</au><au>Vasselin, Eric</au><au>Lefebvre, Dimitri</au><au>Dakyo, Brayima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of repeatability phenomena using the stochastic ellipsoid approach</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2006-07</date><risdate>2006</risdate><volume>24</volume><issue>4</issue><spage>477</spage><epage>490</epage><pages>477-490</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574705002481</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2006-07, Vol.24 (4), p.477-490 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_miscellaneous_29896174 |
source | Cambridge University Press |
subjects | Industrial robots Repeatability modelling Stochastic ellipsoid |
title | Modelling of repeatability phenomena using the stochastic ellipsoid approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20repeatability%20phenomena%20using%20the%20stochastic%20ellipsoid%20approach&rft.jtitle=Robotica&rft.au=Breth%C3%A9,%20Jean-Fran%C3%A7ois&rft.date=2006-07&rft.volume=24&rft.issue=4&rft.spage=477&rft.epage=490&rft.pages=477-490&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574705002481&rft_dat=%3Cproquest_cross%3E29896174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211883749&rft_id=info:pmid/&rft_cupid=10_1017_S0263574705002481&rfr_iscdi=true |