Loading…

Modelling of repeatability phenomena using the stochastic ellipsoid approach

A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the s...

Full description

Saved in:
Bibliographic Details
Published in:Robotica 2006-07, Vol.24 (4), p.477-490
Main Authors: Brethé, Jean-François, Vasselin, Eric, Lefebvre, Dimitri, Dakyo, Brayima
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53
cites
container_end_page 490
container_issue 4
container_start_page 477
container_title Robotica
container_volume 24
creator Brethé, Jean-François
Vasselin, Eric
Lefebvre, Dimitri
Dakyo, Brayima
description A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.
doi_str_mv 10.1017/S0263574705002481
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29896174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574705002481</cupid><sourcerecordid>29896174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLfig2_V_Gmb9FGGbmKnDOdzSNt0zWybmqTgvr0pGwqKT5fL-Z17DheASwRvEET09hXihMQ0ojCGEEcMHYEJipI0ZEnCjsFklMNRPwVn1m4hRARFdAKypS5l06huE-gqMLKXwolcNcrtgr6WnW5lJ4LBjoCrZWCdLmphnSqC0dZbrcpA9L3RoqjPwUklGisvDnMK3h7u17NFmL3MH2d3WVgQFrswRThJC5KXkS9BUSlQzrwQwxyJSkKcYwJxxUqIaYqpjEkZE5anRZyTsqr8PgXX-7s-9mOQ1vFW2cL3EZ3Ug-U4ZWmCaOTBq1_gVg-m8904RogxQqPUQ2gPFUZba2TFe6NaYXYcQT4-l_95rveEe4-yTn5-G4R55wklNObJfMUzOF8vV4sn_ux5csgQbW5UuZE_Tf5P-QKZGYpx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211883749</pqid></control><display><type>article</type><title>Modelling of repeatability phenomena using the stochastic ellipsoid approach</title><source>Cambridge University Press</source><creator>Brethé, Jean-François ; Vasselin, Eric ; Lefebvre, Dimitri ; Dakyo, Brayima</creator><creatorcontrib>Brethé, Jean-François ; Vasselin, Eric ; Lefebvre, Dimitri ; Dakyo, Brayima</creatorcontrib><description>A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574705002481</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Industrial robots ; Repeatability modelling ; Stochastic ellipsoid</subject><ispartof>Robotica, 2006-07, Vol.24 (4), p.477-490</ispartof><rights>2005 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574705002481/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,72711</link.rule.ids></links><search><creatorcontrib>Brethé, Jean-François</creatorcontrib><creatorcontrib>Vasselin, Eric</creatorcontrib><creatorcontrib>Lefebvre, Dimitri</creatorcontrib><creatorcontrib>Dakyo, Brayima</creatorcontrib><title>Modelling of repeatability phenomena using the stochastic ellipsoid approach</title><title>Robotica</title><addtitle>Robotica</addtitle><description>A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.</description><subject>Industrial robots</subject><subject>Repeatability modelling</subject><subject>Stochastic ellipsoid</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLfig2_V_Gmb9FGGbmKnDOdzSNt0zWybmqTgvr0pGwqKT5fL-Z17DheASwRvEET09hXihMQ0ojCGEEcMHYEJipI0ZEnCjsFklMNRPwVn1m4hRARFdAKypS5l06huE-gqMLKXwolcNcrtgr6WnW5lJ4LBjoCrZWCdLmphnSqC0dZbrcpA9L3RoqjPwUklGisvDnMK3h7u17NFmL3MH2d3WVgQFrswRThJC5KXkS9BUSlQzrwQwxyJSkKcYwJxxUqIaYqpjEkZE5anRZyTsqr8PgXX-7s-9mOQ1vFW2cL3EZ3Ug-U4ZWmCaOTBq1_gVg-m8904RogxQqPUQ2gPFUZba2TFe6NaYXYcQT4-l_95rveEe4-yTn5-G4R55wklNObJfMUzOF8vV4sn_ux5csgQbW5UuZE_Tf5P-QKZGYpx</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Brethé, Jean-François</creator><creator>Vasselin, Eric</creator><creator>Lefebvre, Dimitri</creator><creator>Dakyo, Brayima</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200607</creationdate><title>Modelling of repeatability phenomena using the stochastic ellipsoid approach</title><author>Brethé, Jean-François ; Vasselin, Eric ; Lefebvre, Dimitri ; Dakyo, Brayima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Industrial robots</topic><topic>Repeatability modelling</topic><topic>Stochastic ellipsoid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brethé, Jean-François</creatorcontrib><creatorcontrib>Vasselin, Eric</creatorcontrib><creatorcontrib>Lefebvre, Dimitri</creatorcontrib><creatorcontrib>Dakyo, Brayima</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brethé, Jean-François</au><au>Vasselin, Eric</au><au>Lefebvre, Dimitri</au><au>Dakyo, Brayima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of repeatability phenomena using the stochastic ellipsoid approach</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2006-07</date><risdate>2006</risdate><volume>24</volume><issue>4</issue><spage>477</spage><epage>490</epage><pages>477-490</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>A stochastic ellipsoid modelling of repeatability is proposed for industrial manipulator robots. The covariance matrix of angular position is determined introducing the jump process, which reveals to be a first and second order stationary Gaussian process. From this accurate covariance matrix, the stochastic ellipsoid theory gives the density of position in the workspace around the mean position. Hence the pose repeatability index can be computed in different locations. Computed and experimental repeatability are compared. Experimental repeatability variability is studied. A new “intrinsic repeatability index” is proposed. In conclusion, the modelling reflects well the location and load influence on the repeatability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574705002481</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2006-07, Vol.24 (4), p.477-490
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_miscellaneous_29896174
source Cambridge University Press
subjects Industrial robots
Repeatability modelling
Stochastic ellipsoid
title Modelling of repeatability phenomena using the stochastic ellipsoid approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20repeatability%20phenomena%20using%20the%20stochastic%20ellipsoid%20approach&rft.jtitle=Robotica&rft.au=Breth%C3%A9,%20Jean-Fran%C3%A7ois&rft.date=2006-07&rft.volume=24&rft.issue=4&rft.spage=477&rft.epage=490&rft.pages=477-490&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574705002481&rft_dat=%3Cproquest_cross%3E29896174%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-91269c3bd413171da1b838550b1afe02b2302f8d027927e53d538b9c5b3dffe53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211883749&rft_id=info:pmid/&rft_cupid=10_1017_S0263574705002481&rfr_iscdi=true