Loading…

Investigation on the Porous Biomaterial for Bone Reconstruction with Addition of Bio-Mimetic Nano-Sized Inorganic Particles

The spherical nano-sized bioactive particles in the system of CaO-P2O5-SiO2 were bio-mimetically synthesized using micro-emulsion method. The microstructures and properties of the bio- mimetic nano-materials were characterized using XRD, FTIR, SEM/EDAX and TEM techniques. It was indicated that the n...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2007-01, Vol.336-338, p.1534-1537
Main Authors: Chen, Xiao Feng, Yang, Chun Rong, Zheng, Hua De, Wang, Ying Jun, Zhao, Na Ru
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spherical nano-sized bioactive particles in the system of CaO-P2O5-SiO2 were bio-mimetically synthesized using micro-emulsion method. The microstructures and properties of the bio- mimetic nano-materials were characterized using XRD, FTIR, SEM/EDAX and TEM techniques. It was indicated that the nano-particles possessed glassy structural characteristics. The porous composite for bone tissue reconstruction was prepared by compounding poly (hydroxybutyrate-2-co-2-hydroxyvalerate) (PHBV) and the nano-particles of bio-mimetic bioactive glasses (BMBG). Bone-like hydroxyl- carbonate-apatite (HCA) could formed on the surface of porous composite by immersing the composite in simulated body fluid (SBF) at 37°C for 8 hours. With increase of immersion time, the morphology of HCA changed from spherical into flake-like crystals. The study on cells attachment of the porous PHBV/BMBG composite proved that the material possessed satisfactory bioactivity, bio-mineralization function and cells biocompatibility.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.336-338.1534