Loading…

On sampling theory and basic Sturm–Liouville systems

We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2007-09, Vol.206 (1), p.73-85
Main Authors: Annaby, M.H., Bustoz, J., Ismail, M.E.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3
cites cdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3
container_end_page 85
container_issue 1
container_start_page 73
container_title Journal of computational and applied mathematics
container_volume 206
creator Annaby, M.H.
Bustoz, J.
Ismail, M.E.H.
description We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.
doi_str_mv 10.1016/j.cam.2006.05.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29901715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042706003827</els_id><sourcerecordid>29901715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGxZYEuwHV9iMaGKm1SpAzBbp84JuMql2EmlbrwDb8iTkKqV2JjO8v3_r_MRcsloxihTN6vMQZNxSlVGZUa5OCITVmiTMq2LYzKhudYpFVyfkrMYV3QEDRMTohZtEqFZ1759T_oP7MI2gbZMlhC9S176ITQ_X99z3w0bX9eYxG3ssYnn5KSCOuLF4U7J28P96-wpnS8en2d389QJyvrUaSVROyVAc0GXOeO5rkCgKUHK3CgOBVRScFPiMheMgVMVc0ZjibJCBvmUXO9716H7HDD2tvHRYV1Di90QLTeGMs3kCLI96EIXY8DKroNvIGwto3ZnyK7saMjuDFkq7WhozFwdyiE6qKsArfPxL1gUuVBix93uORw_3XgMNjqPrcPSB3S9LTv_z8ov8YV75g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29901715</pqid></control><display><type>article</type><title>On sampling theory and basic Sturm–Liouville systems</title><source>ScienceDirect Journals</source><creator>Annaby, M.H. ; Bustoz, J. ; Ismail, M.E.H.</creator><creatorcontrib>Annaby, M.H. ; Bustoz, J. ; Ismail, M.E.H.</creatorcontrib><description>We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.024</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-Sturm–Liouville problems ; Difference and functional equations, recurrence relations ; Exact sciences and technology ; Finite differences and functional equations ; Green's function ; Integral transforms, operational calculus ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sampling theory ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2007-09, Vol.206 (1), p.73-85</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</citedby><cites>FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18834644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Annaby, M.H.</creatorcontrib><creatorcontrib>Bustoz, J.</creatorcontrib><creatorcontrib>Ismail, M.E.H.</creatorcontrib><title>On sampling theory and basic Sturm–Liouville systems</title><title>Journal of computational and applied mathematics</title><description>We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.</description><subject>[formula omitted]-Sturm–Liouville problems</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Green's function</subject><subject>Integral transforms, operational calculus</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sampling theory</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGxZYEuwHV9iMaGKm1SpAzBbp84JuMql2EmlbrwDb8iTkKqV2JjO8v3_r_MRcsloxihTN6vMQZNxSlVGZUa5OCITVmiTMq2LYzKhudYpFVyfkrMYV3QEDRMTohZtEqFZ1759T_oP7MI2gbZMlhC9S176ITQ_X99z3w0bX9eYxG3ssYnn5KSCOuLF4U7J28P96-wpnS8en2d389QJyvrUaSVROyVAc0GXOeO5rkCgKUHK3CgOBVRScFPiMheMgVMVc0ZjibJCBvmUXO9716H7HDD2tvHRYV1Di90QLTeGMs3kCLI96EIXY8DKroNvIGwto3ZnyK7saMjuDFkq7WhozFwdyiE6qKsArfPxL1gUuVBix93uORw_3XgMNjqPrcPSB3S9LTv_z8ov8YV75g</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Annaby, M.H.</creator><creator>Bustoz, J.</creator><creator>Ismail, M.E.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070901</creationdate><title>On sampling theory and basic Sturm–Liouville systems</title><author>Annaby, M.H. ; Bustoz, J. ; Ismail, M.E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>[formula omitted]-Sturm–Liouville problems</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Green's function</topic><topic>Integral transforms, operational calculus</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sampling theory</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annaby, M.H.</creatorcontrib><creatorcontrib>Bustoz, J.</creatorcontrib><creatorcontrib>Ismail, M.E.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annaby, M.H.</au><au>Bustoz, J.</au><au>Ismail, M.E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sampling theory and basic Sturm–Liouville systems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>206</volume><issue>1</issue><spage>73</spage><epage>85</epage><pages>73-85</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2007-09, Vol.206 (1), p.73-85
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_29901715
source ScienceDirect Journals
subjects [formula omitted]-Sturm–Liouville problems
Difference and functional equations, recurrence relations
Exact sciences and technology
Finite differences and functional equations
Green's function
Integral transforms, operational calculus
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sampling theory
Sciences and techniques of general use
title On sampling theory and basic Sturm–Liouville systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sampling%20theory%20and%20basic%20Sturm%E2%80%93Liouville%20systems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Annaby,%20M.H.&rft.date=2007-09-01&rft.volume=206&rft.issue=1&rft.spage=73&rft.epage=85&rft.pages=73-85&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2006.05.024&rft_dat=%3Cproquest_cross%3E29901715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29901715&rft_id=info:pmid/&rfr_iscdi=true