Loading…
On sampling theory and basic Sturm–Liouville systems
We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equa...
Saved in:
Published in: | Journal of computational and applied mathematics 2007-09, Vol.206 (1), p.73-85 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3 |
container_end_page | 85 |
container_issue | 1 |
container_start_page | 73 |
container_title | Journal of computational and applied mathematics |
container_volume | 206 |
creator | Annaby, M.H. Bustoz, J. Ismail, M.E.H. |
description | We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given. |
doi_str_mv | 10.1016/j.cam.2006.05.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29901715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042706003827</els_id><sourcerecordid>29901715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAGxZYEuwHV9iMaGKm1SpAzBbp84JuMql2EmlbrwDb8iTkKqV2JjO8v3_r_MRcsloxihTN6vMQZNxSlVGZUa5OCITVmiTMq2LYzKhudYpFVyfkrMYV3QEDRMTohZtEqFZ1759T_oP7MI2gbZMlhC9S176ITQ_X99z3w0bX9eYxG3ssYnn5KSCOuLF4U7J28P96-wpnS8en2d389QJyvrUaSVROyVAc0GXOeO5rkCgKUHK3CgOBVRScFPiMheMgVMVc0ZjibJCBvmUXO9716H7HDD2tvHRYV1Di90QLTeGMs3kCLI96EIXY8DKroNvIGwto3ZnyK7saMjuDFkq7WhozFwdyiE6qKsArfPxL1gUuVBix93uORw_3XgMNjqPrcPSB3S9LTv_z8ov8YV75g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29901715</pqid></control><display><type>article</type><title>On sampling theory and basic Sturm–Liouville systems</title><source>ScienceDirect Journals</source><creator>Annaby, M.H. ; Bustoz, J. ; Ismail, M.E.H.</creator><creatorcontrib>Annaby, M.H. ; Bustoz, J. ; Ismail, M.E.H.</creatorcontrib><description>We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.024</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-Sturm–Liouville problems ; Difference and functional equations, recurrence relations ; Exact sciences and technology ; Finite differences and functional equations ; Green's function ; Integral transforms, operational calculus ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sampling theory ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2007-09, Vol.206 (1), p.73-85</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</citedby><cites>FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18834644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Annaby, M.H.</creatorcontrib><creatorcontrib>Bustoz, J.</creatorcontrib><creatorcontrib>Ismail, M.E.H.</creatorcontrib><title>On sampling theory and basic Sturm–Liouville systems</title><title>Journal of computational and applied mathematics</title><description>We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.</description><subject>[formula omitted]-Sturm–Liouville problems</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Green's function</subject><subject>Integral transforms, operational calculus</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sampling theory</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAGxZYEuwHV9iMaGKm1SpAzBbp84JuMql2EmlbrwDb8iTkKqV2JjO8v3_r_MRcsloxihTN6vMQZNxSlVGZUa5OCITVmiTMq2LYzKhudYpFVyfkrMYV3QEDRMTohZtEqFZ1759T_oP7MI2gbZMlhC9S176ITQ_X99z3w0bX9eYxG3ssYnn5KSCOuLF4U7J28P96-wpnS8en2d389QJyvrUaSVROyVAc0GXOeO5rkCgKUHK3CgOBVRScFPiMheMgVMVc0ZjibJCBvmUXO9716H7HDD2tvHRYV1Di90QLTeGMs3kCLI96EIXY8DKroNvIGwto3ZnyK7saMjuDFkq7WhozFwdyiE6qKsArfPxL1gUuVBix93uORw_3XgMNjqPrcPSB3S9LTv_z8ov8YV75g</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Annaby, M.H.</creator><creator>Bustoz, J.</creator><creator>Ismail, M.E.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070901</creationdate><title>On sampling theory and basic Sturm–Liouville systems</title><author>Annaby, M.H. ; Bustoz, J. ; Ismail, M.E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>[formula omitted]-Sturm–Liouville problems</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Green's function</topic><topic>Integral transforms, operational calculus</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sampling theory</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Annaby, M.H.</creatorcontrib><creatorcontrib>Bustoz, J.</creatorcontrib><creatorcontrib>Ismail, M.E.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annaby, M.H.</au><au>Bustoz, J.</au><au>Ismail, M.E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sampling theory and basic Sturm–Liouville systems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>206</volume><issue>1</issue><spage>73</spage><epage>85</epage><pages>73-85</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We investigate the sampling theory associated with basic Sturm–Liouville eigenvalue problems. We derive two sampling theorems for integral transforms whose kernels are basic functions and the integral is of Jackson's type. The kernel in the first theorem is a solution of a basic difference equation and in the second one it is expressed in terms of basic Green's function of the basic Sturm–Liouville systems. Examples involving basic sine and cosine transforms are given.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2007-09, Vol.206 (1), p.73-85 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_29901715 |
source | ScienceDirect Journals |
subjects | [formula omitted]-Sturm–Liouville problems Difference and functional equations, recurrence relations Exact sciences and technology Finite differences and functional equations Green's function Integral transforms, operational calculus Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sampling theory Sciences and techniques of general use |
title | On sampling theory and basic Sturm–Liouville systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sampling%20theory%20and%20basic%20Sturm%E2%80%93Liouville%20systems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Annaby,%20M.H.&rft.date=2007-09-01&rft.volume=206&rft.issue=1&rft.spage=73&rft.epage=85&rft.pages=73-85&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2006.05.024&rft_dat=%3Cproquest_cross%3E29901715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-c765e7c64a7240b31237fa4e9da553962a8af5429deb3411ac6f1c97ede5fe1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29901715&rft_id=info:pmid/&rfr_iscdi=true |