Loading…
An Evaluation of Thermal Fatigue Cracking and Chemical Reaction in Die Casting Mould
It is well known that the main failure mechanisms in die-casting mould are heat checking due to thermal fatigue and melt-out caused by chemical reaction between die and molten alloys. Thermal fatigue tests were carried out using the thermal cycle simulator to establish the proper method to estimate...
Saved in:
Published in: | Key engineering materials 2007-08, Vol.345-346, p.701-704 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that the main failure mechanisms in die-casting mould are heat checking
due to thermal fatigue and melt-out caused by chemical reaction between die and molten alloys.
Thermal fatigue tests were carried out using the thermal cycle simulator to establish the proper
method to estimate the thermal fatigue resistance of hot die steel. In this study, the thermal shock
tester consisted of induction heating and water spray cooling unit was constructed to evaluate
thermal crack propagation resistance and the sum of crack length per unit specimen length, Lm is
proposed as the index representing the susceptibility to crack initiation and propagation. Also, new
concept of measurement for the melt-out behavior was suggested. AISI H13 hot work tool steel was
solution treated and tempered at various temperatures, to control the hardness and toughness that
have effect on the behavior of thermal crack propagation. The result of thermal fatigue test showed
that there is optimum value of hardness and impact energy to maximize the thermal crack
propagation resistance. The influence of nitriding on melt-out resistance was also investigated. The
dissolution rate due to melt-out phenomenon tended to be smaller for thicker compound layer.
Furthermore, the resistance to melt-out was affected by the compound layer thickness rather than
that of diffusion layer. The results of the both tests properly reflect the effect of materials properties
on failure modes of die-casting mould and it means those test methods are suitable to evaluate the
durability of hot work tool steel for die-casting. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.345-346.701 |