Loading…
Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations
In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abst...
Saved in:
Published in: | Numerical functional analysis and optimization 2007-05, Vol.28 (5-6), p.603-629 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3 |
container_end_page | 629 |
container_issue | 5-6 |
container_start_page | 603 |
container_title | Numerical functional analysis and optimization |
container_volume | 28 |
creator | Beyn, Wolf-Jürgen Rottmann-Matthes, Jens |
description | In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system. |
doi_str_mv | 10.1080/01630560701348475 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_29914793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29914793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxAey8YhcYx06cSGx4g1QJhEq3lpNMIMiJi-1C-_c4KrtKsJrFnHNndAk5YXDGoIBzYDmHLAcJjItCyGyHTFjG0yQVudwlk3GfRIDvkwPvPwCAp2UxIeYFvTVfOAR660PX64CettbRK7scGu3WdK7NEumzs5XB3lM70Kl2b0gfh4DuSxtP552m4R3p7B1tFGxLbzpfOwxILxcLZ1djbGcHf0T22ijg8e88JK93t7Prh2T6dP94fTlNai5lSBimrG4LIdJUy6yqG1FX0GIJEmUDrMpZJVgNkBcZa3KWoagE4AjJsgXW8ENyusmNxz-X6IPq40NojB7QLr1Ky5IJWfIIsg1YO-u9w1YtXHzWrRUDNfaqtnqNzsXG6YbYU6-_rTONCnptrGudHurOK_6XLv_VtywVVoH_ADrikRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29914793</pqid></control><display><type>article</type><title>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</title><source>Taylor and Francis Science and Technology Collection</source><creator>Beyn, Wolf-Jürgen ; Rottmann-Matthes, Jens</creator><creatorcontrib>Beyn, Wolf-Jürgen ; Rottmann-Matthes, Jens</creatorcontrib><description>In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630560701348475</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Boundary value problems ; Hyperbolic-parabolic systems ; Resolvent estimates ; Theory of discrete approximations ; Traveling waves ; Unbounded domains</subject><ispartof>Numerical functional analysis and optimization, 2007-05, Vol.28 (5-6), p.603-629</ispartof><rights>Copyright Taylor & Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</citedby><cites>FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><creatorcontrib>Rottmann-Matthes, Jens</creatorcontrib><title>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</title><title>Numerical functional analysis and optimization</title><description>In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.</description><subject>Boundary value problems</subject><subject>Hyperbolic-parabolic systems</subject><subject>Resolvent estimates</subject><subject>Theory of discrete approximations</subject><subject>Traveling waves</subject><subject>Unbounded domains</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxAey8YhcYx06cSGx4g1QJhEq3lpNMIMiJi-1C-_c4KrtKsJrFnHNndAk5YXDGoIBzYDmHLAcJjItCyGyHTFjG0yQVudwlk3GfRIDvkwPvPwCAp2UxIeYFvTVfOAR660PX64CettbRK7scGu3WdK7NEumzs5XB3lM70Kl2b0gfh4DuSxtP552m4R3p7B1tFGxLbzpfOwxILxcLZ1djbGcHf0T22ijg8e88JK93t7Prh2T6dP94fTlNai5lSBimrG4LIdJUy6yqG1FX0GIJEmUDrMpZJVgNkBcZa3KWoagE4AjJsgXW8ENyusmNxz-X6IPq40NojB7QLr1Ky5IJWfIIsg1YO-u9w1YtXHzWrRUDNfaqtnqNzsXG6YbYU6-_rTONCnptrGudHurOK_6XLv_VtywVVoH_ADrikRU</recordid><startdate>20070529</startdate><enddate>20070529</enddate><creator>Beyn, Wolf-Jürgen</creator><creator>Rottmann-Matthes, Jens</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070529</creationdate><title>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</title><author>Beyn, Wolf-Jürgen ; Rottmann-Matthes, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boundary value problems</topic><topic>Hyperbolic-parabolic systems</topic><topic>Resolvent estimates</topic><topic>Theory of discrete approximations</topic><topic>Traveling waves</topic><topic>Unbounded domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><creatorcontrib>Rottmann-Matthes, Jens</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyn, Wolf-Jürgen</au><au>Rottmann-Matthes, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2007-05-29</date><risdate>2007</risdate><volume>28</volume><issue>5-6</issue><spage>603</spage><epage>629</epage><pages>603-629</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/01630560701348475</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-0563 |
ispartof | Numerical functional analysis and optimization, 2007-05, Vol.28 (5-6), p.603-629 |
issn | 0163-0563 1532-2467 |
language | eng |
recordid | cdi_proquest_miscellaneous_29914793 |
source | Taylor and Francis Science and Technology Collection |
subjects | Boundary value problems Hyperbolic-parabolic systems Resolvent estimates Theory of discrete approximations Traveling waves Unbounded domains |
title | Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolvent%20Estimates%20for%20Boundary%20Value%20Problems%20on%20Large%20Intervals%20Via%20the%20Theory%20of%20Discrete%20Approximations&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Beyn,%20Wolf-J%C3%BCrgen&rft.date=2007-05-29&rft.volume=28&rft.issue=5-6&rft.spage=603&rft.epage=629&rft.pages=603-629&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630560701348475&rft_dat=%3Cproquest_infor%3E29914793%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29914793&rft_id=info:pmid/&rfr_iscdi=true |