Loading…

Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations

In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abst...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization 2007-05, Vol.28 (5-6), p.603-629
Main Authors: Beyn, Wolf-Jürgen, Rottmann-Matthes, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3
cites cdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3
container_end_page 629
container_issue 5-6
container_start_page 603
container_title Numerical functional analysis and optimization
container_volume 28
creator Beyn, Wolf-Jürgen
Rottmann-Matthes, Jens
description In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.
doi_str_mv 10.1080/01630560701348475
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_29914793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29914793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxAey8YhcYx06cSGx4g1QJhEq3lpNMIMiJi-1C-_c4KrtKsJrFnHNndAk5YXDGoIBzYDmHLAcJjItCyGyHTFjG0yQVudwlk3GfRIDvkwPvPwCAp2UxIeYFvTVfOAR660PX64CettbRK7scGu3WdK7NEumzs5XB3lM70Kl2b0gfh4DuSxtP552m4R3p7B1tFGxLbzpfOwxILxcLZ1djbGcHf0T22ijg8e88JK93t7Prh2T6dP94fTlNai5lSBimrG4LIdJUy6yqG1FX0GIJEmUDrMpZJVgNkBcZa3KWoagE4AjJsgXW8ENyusmNxz-X6IPq40NojB7QLr1Ky5IJWfIIsg1YO-u9w1YtXHzWrRUDNfaqtnqNzsXG6YbYU6-_rTONCnptrGudHurOK_6XLv_VtywVVoH_ADrikRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29914793</pqid></control><display><type>article</type><title>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</title><source>Taylor and Francis Science and Technology Collection</source><creator>Beyn, Wolf-Jürgen ; Rottmann-Matthes, Jens</creator><creatorcontrib>Beyn, Wolf-Jürgen ; Rottmann-Matthes, Jens</creatorcontrib><description>In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630560701348475</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Boundary value problems ; Hyperbolic-parabolic systems ; Resolvent estimates ; Theory of discrete approximations ; Traveling waves ; Unbounded domains</subject><ispartof>Numerical functional analysis and optimization, 2007-05, Vol.28 (5-6), p.603-629</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</citedby><cites>FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><creatorcontrib>Rottmann-Matthes, Jens</creatorcontrib><title>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</title><title>Numerical functional analysis and optimization</title><description>In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.</description><subject>Boundary value problems</subject><subject>Hyperbolic-parabolic systems</subject><subject>Resolvent estimates</subject><subject>Theory of discrete approximations</subject><subject>Traveling waves</subject><subject>Unbounded domains</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxAey8YhcYx06cSGx4g1QJhEq3lpNMIMiJi-1C-_c4KrtKsJrFnHNndAk5YXDGoIBzYDmHLAcJjItCyGyHTFjG0yQVudwlk3GfRIDvkwPvPwCAp2UxIeYFvTVfOAR660PX64CettbRK7scGu3WdK7NEumzs5XB3lM70Kl2b0gfh4DuSxtP552m4R3p7B1tFGxLbzpfOwxILxcLZ1djbGcHf0T22ijg8e88JK93t7Prh2T6dP94fTlNai5lSBimrG4LIdJUy6yqG1FX0GIJEmUDrMpZJVgNkBcZa3KWoagE4AjJsgXW8ENyusmNxz-X6IPq40NojB7QLr1Ky5IJWfIIsg1YO-u9w1YtXHzWrRUDNfaqtnqNzsXG6YbYU6-_rTONCnptrGudHurOK_6XLv_VtywVVoH_ADrikRU</recordid><startdate>20070529</startdate><enddate>20070529</enddate><creator>Beyn, Wolf-Jürgen</creator><creator>Rottmann-Matthes, Jens</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070529</creationdate><title>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</title><author>Beyn, Wolf-Jürgen ; Rottmann-Matthes, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boundary value problems</topic><topic>Hyperbolic-parabolic systems</topic><topic>Resolvent estimates</topic><topic>Theory of discrete approximations</topic><topic>Traveling waves</topic><topic>Unbounded domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyn, Wolf-Jürgen</creatorcontrib><creatorcontrib>Rottmann-Matthes, Jens</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyn, Wolf-Jürgen</au><au>Rottmann-Matthes, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2007-05-29</date><risdate>2007</risdate><volume>28</volume><issue>5-6</issue><spage>603</spage><epage>629</epage><pages>603-629</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>In many applications such as the stability analysis of traveling waves, it is important to know the spectral properties of a linear differential operator on the whole real line. We investigate the approximation of this operator and its spectrum by finite interval boundary value problems from an abstract point of view. Under suitable assumptions on the boundary operators, we prove that the approximations converge regularly (in the sense of discrete approximations) to the all line problem, which has strong implications for the behavior of resolvents and spectra. As an application, we obtain resolvent estimates for abstract coupled hyperbolic-parabolic equations. Furthermore, we show that our results apply to the FitzHugh-Nagumo system.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01630560701348475</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 2007-05, Vol.28 (5-6), p.603-629
issn 0163-0563
1532-2467
language eng
recordid cdi_proquest_miscellaneous_29914793
source Taylor and Francis Science and Technology Collection
subjects Boundary value problems
Hyperbolic-parabolic systems
Resolvent estimates
Theory of discrete approximations
Traveling waves
Unbounded domains
title Resolvent Estimates for Boundary Value Problems on Large Intervals Via the Theory of Discrete Approximations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolvent%20Estimates%20for%20Boundary%20Value%20Problems%20on%20Large%20Intervals%20Via%20the%20Theory%20of%20Discrete%20Approximations&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Beyn,%20Wolf-J%C3%BCrgen&rft.date=2007-05-29&rft.volume=28&rft.issue=5-6&rft.spage=603&rft.epage=629&rft.pages=603-629&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630560701348475&rft_dat=%3Cproquest_infor%3E29914793%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-1e21cf84422a75bcd4cb0fe907e7d01b61b41c006851d615e4b40e4cb079f01d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29914793&rft_id=info:pmid/&rfr_iscdi=true