Loading…
Application of genetic programming to the calibration of industrial robots
Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new in...
Saved in:
Published in: | Computers in industry 2007-04, Vol.58 (3), p.255-264 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new inverse static kinematic calibration technique based on genetic programming, which is used to establish and identify model structure and parameters. The technique has the potential to identify the true calibration model avoiding the problems of conventional methods. The fundamentals of this approach are described and experimental results provided. |
---|---|
ISSN: | 0166-3615 1872-6194 |
DOI: | 10.1016/j.compind.2006.06.003 |