Loading…

Application of genetic programming to the calibration of industrial robots

Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new in...

Full description

Saved in:
Bibliographic Details
Published in:Computers in industry 2007-04, Vol.58 (3), p.255-264
Main Authors: Dolinsky, J.U., Jenkinson, I.D., Colquhoun, G.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83
cites cdi_FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83
container_end_page 264
container_issue 3
container_start_page 255
container_title Computers in industry
container_volume 58
creator Dolinsky, J.U.
Jenkinson, I.D.
Colquhoun, G.J.
description Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new inverse static kinematic calibration technique based on genetic programming, which is used to establish and identify model structure and parameters. The technique has the potential to identify the true calibration model avoiding the problems of conventional methods. The fundamentals of this approach are described and experimental results provided.
doi_str_mv 10.1016/j.compind.2006.06.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29915492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166361506001102</els_id><sourcerecordid>20010938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKEb3XXMo03TlQyDTwbc6Dqkyc2YoW1qkhH897bMoMu5HLib79xzOQhdE7wgmPC77UL7bnC9WVCM-WISZidoRkRFc07q4hTNRo7njJPyHF3EuMXjVBWfodflMLROq-R8n3mbbaCH5HQ2BL8Jqutcv8mSz9InZFq1rgl_5Ji3iyk41WbBNz7FS3RmVRvh6rDn6OPx4X31nK_fnl5Wy3WuC0xSzivBlTZgKAZmddPohmlljSEAFS1EyQgTmFNdl0IwThWrhRXWUlPwihnB5uh2f3f88WsHMcnORQ1tq3rwuyhpXZOyqOlxEGOCazZdLPegDj7GAFYOwXUq_EiC5VSx3MpDxZOJy0mYjb6bQ4CKYzs2qF67-G8WpeC4Lkfufs_BWMu3gyCjdtBrMC6ATtJ4dyTpF1pjlUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20010938</pqid></control><display><type>article</type><title>Application of genetic programming to the calibration of industrial robots</title><source>ScienceDirect Freedom Collection</source><creator>Dolinsky, J.U. ; Jenkinson, I.D. ; Colquhoun, G.J.</creator><creatorcontrib>Dolinsky, J.U. ; Jenkinson, I.D. ; Colquhoun, G.J.</creatorcontrib><description>Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new inverse static kinematic calibration technique based on genetic programming, which is used to establish and identify model structure and parameters. The technique has the potential to identify the true calibration model avoiding the problems of conventional methods. The fundamentals of this approach are described and experimental results provided.</description><identifier>ISSN: 0166-3615</identifier><identifier>EISSN: 1872-6194</identifier><identifier>DOI: 10.1016/j.compind.2006.06.003</identifier><identifier>CODEN: CINUD4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Co-evolution ; Computer science; control theory; systems ; Control theory. Systems ; Distal supervised learning ; Exact sciences and technology ; Inverse static kinematic calibration ; Process control. Computer integrated manufacturing ; Robotics ; Software ; Software engineering</subject><ispartof>Computers in industry, 2007-04, Vol.58 (3), p.255-264</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83</citedby><cites>FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18586095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolinsky, J.U.</creatorcontrib><creatorcontrib>Jenkinson, I.D.</creatorcontrib><creatorcontrib>Colquhoun, G.J.</creatorcontrib><title>Application of genetic programming to the calibration of industrial robots</title><title>Computers in industry</title><description>Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new inverse static kinematic calibration technique based on genetic programming, which is used to establish and identify model structure and parameters. The technique has the potential to identify the true calibration model avoiding the problems of conventional methods. The fundamentals of this approach are described and experimental results provided.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Co-evolution</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Distal supervised learning</subject><subject>Exact sciences and technology</subject><subject>Inverse static kinematic calibration</subject><subject>Process control. Computer integrated manufacturing</subject><subject>Robotics</subject><subject>Software</subject><subject>Software engineering</subject><issn>0166-3615</issn><issn>1872-6194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKEb3XXMo03TlQyDTwbc6Dqkyc2YoW1qkhH897bMoMu5HLib79xzOQhdE7wgmPC77UL7bnC9WVCM-WISZidoRkRFc07q4hTNRo7njJPyHF3EuMXjVBWfodflMLROq-R8n3mbbaCH5HQ2BL8Jqutcv8mSz9InZFq1rgl_5Ji3iyk41WbBNz7FS3RmVRvh6rDn6OPx4X31nK_fnl5Wy3WuC0xSzivBlTZgKAZmddPohmlljSEAFS1EyQgTmFNdl0IwThWrhRXWUlPwihnB5uh2f3f88WsHMcnORQ1tq3rwuyhpXZOyqOlxEGOCazZdLPegDj7GAFYOwXUq_EiC5VSx3MpDxZOJy0mYjb6bQ4CKYzs2qF67-G8WpeC4Lkfufs_BWMu3gyCjdtBrMC6ATtJ4dyTpF1pjlUQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Dolinsky, J.U.</creator><creator>Jenkinson, I.D.</creator><creator>Colquhoun, G.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Application of genetic programming to the calibration of industrial robots</title><author>Dolinsky, J.U. ; Jenkinson, I.D. ; Colquhoun, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Co-evolution</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Distal supervised learning</topic><topic>Exact sciences and technology</topic><topic>Inverse static kinematic calibration</topic><topic>Process control. Computer integrated manufacturing</topic><topic>Robotics</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolinsky, J.U.</creatorcontrib><creatorcontrib>Jenkinson, I.D.</creatorcontrib><creatorcontrib>Colquhoun, G.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolinsky, J.U.</au><au>Jenkinson, I.D.</au><au>Colquhoun, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of genetic programming to the calibration of industrial robots</atitle><jtitle>Computers in industry</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>58</volume><issue>3</issue><spage>255</spage><epage>264</epage><pages>255-264</pages><issn>0166-3615</issn><eissn>1872-6194</eissn><coden>CINUD4</coden><abstract>Robot calibration is a widely studied area for which a variety of solutions have been generated. Most of the methods proposed address the calibration problem by establishing a model structure followed by indirect, often ill-conditioned numeric parameter identification. This paper introduces a new inverse static kinematic calibration technique based on genetic programming, which is used to establish and identify model structure and parameters. The technique has the potential to identify the true calibration model avoiding the problems of conventional methods. The fundamentals of this approach are described and experimental results provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compind.2006.06.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-3615
ispartof Computers in industry, 2007-04, Vol.58 (3), p.255-264
issn 0166-3615
1872-6194
language eng
recordid cdi_proquest_miscellaneous_29915492
source ScienceDirect Freedom Collection
subjects Applied sciences
Artificial intelligence
Co-evolution
Computer science
control theory
systems
Control theory. Systems
Distal supervised learning
Exact sciences and technology
Inverse static kinematic calibration
Process control. Computer integrated manufacturing
Robotics
Software
Software engineering
title Application of genetic programming to the calibration of industrial robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20genetic%20programming%20to%20the%20calibration%20of%20industrial%20robots&rft.jtitle=Computers%20in%20industry&rft.au=Dolinsky,%20J.U.&rft.date=2007-04-01&rft.volume=58&rft.issue=3&rft.spage=255&rft.epage=264&rft.pages=255-264&rft.issn=0166-3615&rft.eissn=1872-6194&rft.coden=CINUD4&rft_id=info:doi/10.1016/j.compind.2006.06.003&rft_dat=%3Cproquest_cross%3E20010938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-6786acded20e3fcbbcb3cafdd1ee724853138062c9588362a398f8ff2d4673d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20010938&rft_id=info:pmid/&rfr_iscdi=true