Loading…

Simulation of Electrical Resistivity of Carbon Black Filled Rubber under Elongation

It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of macromolecular science. Physics 2007-05, Vol.46 (3), p.561-567
Main Authors: Xie, Zhimin, Yum, Young-Jin, Lee, Chul-Kyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83
cites cdi_FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83
container_end_page 567
container_issue 3
container_start_page 561
container_title Journal of macromolecular science. Physics
container_volume 46
creator Xie, Zhimin
Yum, Young-Jin
Lee, Chul-Kyoung
description It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.
doi_str_mv 10.1080/00222340701257893
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29918001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753693868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83</originalsourceid><addsrcrecordid>eNqFkE1P7CAUhonRxPHjB7jrRu-qeoBSIHHjnYwfiYmJunDXUEoNXqYoUHX-vYzjjQujngVncZ7nDXkR2sNwiEHAEQAhhFbAARPGhaRraIIZYWUN8m4dTZb3MgNiE23F-AB5KMcTdHNj56NTyfqh8H0xc0anYLVyxbWJNib7bNNieZmq0Gbmr1P6X3FqnTNdcT22rQnFOHT5nTk_3L8H7aCNXrlodj_2Nro9nd1Oz8vLq7OL6cllqSsqU8k00bUB2hLccUVrDaySRhOhGNdMt6KWoAA6LElV855VuAUucU-kMFQJuo3-rGIfg38aTUzN3EZtnFOD8WNsOKO1pKJekgc_kkRKLABwBvEK1MHHGEzfPAY7V2HRYGiWPTdfes7O_ke4irm3PqhB2_gpCl4DkTxzfMXZofdhrl58cF2T1ML58F_6kt6k15TN419N-v0H3wA-YaD7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29918001</pqid></control><display><type>article</type><title>Simulation of Electrical Resistivity of Carbon Black Filled Rubber under Elongation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Xie, Zhimin ; Yum, Young-Jin ; Lee, Chul-Kyoung</creator><creatorcontrib>Xie, Zhimin ; Yum, Young-Jin ; Lee, Chul-Kyoung</creatorcontrib><description>It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.</description><identifier>ISSN: 0022-2348</identifier><identifier>EISSN: 1525-609X</identifier><identifier>DOI: 10.1080/00222340701257893</identifier><identifier>CODEN: JMAPBR</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Carbon black ; carbon black network ; circuit ; Composites ; Electrical resistivity ; Elongation ; Exact sciences and technology ; filled rubber ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; resistivity ; Rubber ; Simulation ; Technology of polymers ; tunneling conduction mechanism</subject><ispartof>Journal of macromolecular science. Physics, 2007-05, Vol.46 (3), p.561-567</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83</citedby><cites>FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18760297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Zhimin</creatorcontrib><creatorcontrib>Yum, Young-Jin</creatorcontrib><creatorcontrib>Lee, Chul-Kyoung</creatorcontrib><title>Simulation of Electrical Resistivity of Carbon Black Filled Rubber under Elongation</title><title>Journal of macromolecular science. Physics</title><description>It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.</description><subject>Applied sciences</subject><subject>Carbon black</subject><subject>carbon black network</subject><subject>circuit</subject><subject>Composites</subject><subject>Electrical resistivity</subject><subject>Elongation</subject><subject>Exact sciences and technology</subject><subject>filled rubber</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>resistivity</subject><subject>Rubber</subject><subject>Simulation</subject><subject>Technology of polymers</subject><subject>tunneling conduction mechanism</subject><issn>0022-2348</issn><issn>1525-609X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P7CAUhonRxPHjB7jrRu-qeoBSIHHjnYwfiYmJunDXUEoNXqYoUHX-vYzjjQujngVncZ7nDXkR2sNwiEHAEQAhhFbAARPGhaRraIIZYWUN8m4dTZb3MgNiE23F-AB5KMcTdHNj56NTyfqh8H0xc0anYLVyxbWJNib7bNNieZmq0Gbmr1P6X3FqnTNdcT22rQnFOHT5nTk_3L8H7aCNXrlodj_2Nro9nd1Oz8vLq7OL6cllqSsqU8k00bUB2hLccUVrDaySRhOhGNdMt6KWoAA6LElV855VuAUucU-kMFQJuo3-rGIfg38aTUzN3EZtnFOD8WNsOKO1pKJekgc_kkRKLABwBvEK1MHHGEzfPAY7V2HRYGiWPTdfes7O_ke4irm3PqhB2_gpCl4DkTxzfMXZofdhrl58cF2T1ML58F_6kt6k15TN419N-v0H3wA-YaD7</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Xie, Zhimin</creator><creator>Yum, Young-Jin</creator><creator>Lee, Chul-Kyoung</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200705</creationdate><title>Simulation of Electrical Resistivity of Carbon Black Filled Rubber under Elongation</title><author>Xie, Zhimin ; Yum, Young-Jin ; Lee, Chul-Kyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Carbon black</topic><topic>carbon black network</topic><topic>circuit</topic><topic>Composites</topic><topic>Electrical resistivity</topic><topic>Elongation</topic><topic>Exact sciences and technology</topic><topic>filled rubber</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>resistivity</topic><topic>Rubber</topic><topic>Simulation</topic><topic>Technology of polymers</topic><topic>tunneling conduction mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhimin</creatorcontrib><creatorcontrib>Yum, Young-Jin</creatorcontrib><creatorcontrib>Lee, Chul-Kyoung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of macromolecular science. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Zhimin</au><au>Yum, Young-Jin</au><au>Lee, Chul-Kyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Electrical Resistivity of Carbon Black Filled Rubber under Elongation</atitle><jtitle>Journal of macromolecular science. Physics</jtitle><date>2007-05</date><risdate>2007</risdate><volume>46</volume><issue>3</issue><spage>561</spage><epage>567</epage><pages>561-567</pages><issn>0022-2348</issn><eissn>1525-609X</eissn><coden>JMAPBR</coden><abstract>It has been known that the carbon black (CB) network is responsible for the electrical and mechanical behaviors of filled rubber. Due to the complexity involved in the filled rubber in relation to the conductive mechanism of the CB network, there has been little work concerned with simulation of the electrical behavior at large strains. Based upon an infinite circuit model, the electrical resistivity of CB filled rubber under elongation is simulated. For CB (N330) filled natural rubber with volume fraction of 27.5%, the simulated electrical resistivity increases with elongation at small stains, corresponding to the breakup of the agglomerates. The reduction in resistivity at larger strains corresponds to the decrease of the junction width, which results in a decrease of the contact resistance. Good agreement is found between the simulations and the experimental data available in the literature. The simulated results confirm the effects of the breakdown of the CB network and the alignment of CB aggregates under strain on the electrical resistivity.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00222340701257893</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2348
ispartof Journal of macromolecular science. Physics, 2007-05, Vol.46 (3), p.561-567
issn 0022-2348
1525-609X
language eng
recordid cdi_proquest_miscellaneous_29918001
source Taylor and Francis Science and Technology Collection
subjects Applied sciences
Carbon black
carbon black network
circuit
Composites
Electrical resistivity
Elongation
Exact sciences and technology
filled rubber
Forms of application and semi-finished materials
Polymer industry, paints, wood
resistivity
Rubber
Simulation
Technology of polymers
tunneling conduction mechanism
title Simulation of Electrical Resistivity of Carbon Black Filled Rubber under Elongation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Electrical%20Resistivity%20of%20Carbon%20Black%20Filled%20Rubber%20under%20Elongation&rft.jtitle=Journal%20of%20macromolecular%20science.%20Physics&rft.au=Xie,%20Zhimin&rft.date=2007-05&rft.volume=46&rft.issue=3&rft.spage=561&rft.epage=567&rft.pages=561-567&rft.issn=0022-2348&rft.eissn=1525-609X&rft.coden=JMAPBR&rft_id=info:doi/10.1080/00222340701257893&rft_dat=%3Cproquest_pasca%3E753693868%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-5c2c6e03b21d7a36c0549ec28a57c5cb8690a00d192467f541b0791f298e3a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29918001&rft_id=info:pmid/&rfr_iscdi=true