Loading…
Theoretical analysis of startup of a pulsating heat pipe
A theoretical analysis is conducted to determine the primary factors affecting the startup characteristics of a pulsating heat pipe. It is found that the wall surface condition, evaporation in the heating section, superheat, bubble growth, and vapor bubbles trapped in cavities at the capillary inner...
Saved in:
Published in: | International journal of heat and mass transfer 2007-06, Vol.50 (11), p.2309-2316 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A theoretical analysis is conducted to determine the primary factors affecting the startup characteristics of a pulsating heat pipe. It is found that the wall surface condition, evaporation in the heating section, superheat, bubble growth, and vapor bubbles trapped in cavities at the capillary inner wall affect the startup of oscillating motion in the pulsating heat pipe. The required superheat and heat flux level for the startup of oscillating motions in a pulsating heat pipe depend on the cavity size of the inner wall surface and the naturally-formed vapor bubbles and their shapes. When the capillary inner surface is coated or fabricated with cavities or roughness, the pulsating heat pipe can be readily started up. And it is found that the working fluid significantly affects the startup characteristics of a pulsating heat pipe. The results presented here can result in a better understanding of the startup operation of a pulsating heat pipe. |
---|---|
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2006.10.043 |