Loading…

Trajectory optimization in the presence of uncertainty

The design of a trajectory for an aerospace vehicle can be formulated using modern optimal control and/or nonlinear programming techniques. Typically, the optimal trajectory is constructed assuming an ideal operating environment and conditions. In practice, of course, conditions are seldom ideal. A...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the astronautical sciences 2006-04, Vol.54 (2), p.227-243
Main Author: Betts, John T.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673
cites cdi_FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673
container_end_page 243
container_issue 2
container_start_page 227
container_title The Journal of the astronautical sciences
container_volume 54
creator Betts, John T.
description The design of a trajectory for an aerospace vehicle can be formulated using modern optimal control and/or nonlinear programming techniques. Typically, the optimal trajectory is constructed assuming an ideal operating environment and conditions. In practice, of course, conditions are seldom ideal. A real vehicle must have some mechanism to compensate for 'off-nominal' conditions. Environmental factors such as temperature, and atmospheric pressure, as well as 'imperfections' caused by uncertainty in the manufacturing process, all contribute to uncertainty in the performance of a vehicle. This paper describes how modem trajectory optimization techniques can incorporate statistical constraints as part of the mission design process to compensate for uncertainty.
doi_str_mv 10.1007/BF03256484
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29949132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29949132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673</originalsourceid><addsrcrecordid>eNpFkLFOwzAUAD2ARCksfEEmBqSAn2M78QgVLUiVWMocPexn4aqNg-0M5espKhLTLacbjrEb4PfAefvwtOSNUFp28ozNOBdQG5Digl3mvOW8AW5gxvQm4ZZsielQxbGEffjGEuJQhaEqn1SNiTINlqroq-nIVDAM5XDFzj3uMl3_cc7el8-bxUu9flu9Lh7XtQUjSg1dh8Cd6DS1rqVWeK3Qkm28RKmwNUpqdABeWa8_CJ2izjvnlCG0oNtmzm5P3THFr4ly6fchW9rtcKA45V4YIw004ijenUSbYs6JfD-msMd06IH3vzv6_x3ND9lVVQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29949132</pqid></control><display><type>article</type><title>Trajectory optimization in the presence of uncertainty</title><source>Springer Link</source><creator>Betts, John T.</creator><creatorcontrib>Betts, John T.</creatorcontrib><description>The design of a trajectory for an aerospace vehicle can be formulated using modern optimal control and/or nonlinear programming techniques. Typically, the optimal trajectory is constructed assuming an ideal operating environment and conditions. In practice, of course, conditions are seldom ideal. A real vehicle must have some mechanism to compensate for 'off-nominal' conditions. Environmental factors such as temperature, and atmospheric pressure, as well as 'imperfections' caused by uncertainty in the manufacturing process, all contribute to uncertainty in the performance of a vehicle. This paper describes how modem trajectory optimization techniques can incorporate statistical constraints as part of the mission design process to compensate for uncertainty.</description><identifier>ISSN: 0021-9142</identifier><identifier>DOI: 10.1007/BF03256484</identifier><language>eng</language><ispartof>The Journal of the astronautical sciences, 2006-04, Vol.54 (2), p.227-243</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673</citedby><cites>FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Betts, John T.</creatorcontrib><title>Trajectory optimization in the presence of uncertainty</title><title>The Journal of the astronautical sciences</title><description>The design of a trajectory for an aerospace vehicle can be formulated using modern optimal control and/or nonlinear programming techniques. Typically, the optimal trajectory is constructed assuming an ideal operating environment and conditions. In practice, of course, conditions are seldom ideal. A real vehicle must have some mechanism to compensate for 'off-nominal' conditions. Environmental factors such as temperature, and atmospheric pressure, as well as 'imperfections' caused by uncertainty in the manufacturing process, all contribute to uncertainty in the performance of a vehicle. This paper describes how modem trajectory optimization techniques can incorporate statistical constraints as part of the mission design process to compensate for uncertainty.</description><issn>0021-9142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkLFOwzAUAD2ARCksfEEmBqSAn2M78QgVLUiVWMocPexn4aqNg-0M5espKhLTLacbjrEb4PfAefvwtOSNUFp28ozNOBdQG5Digl3mvOW8AW5gxvQm4ZZsielQxbGEffjGEuJQhaEqn1SNiTINlqroq-nIVDAM5XDFzj3uMl3_cc7el8-bxUu9flu9Lh7XtQUjSg1dh8Cd6DS1rqVWeK3Qkm28RKmwNUpqdABeWa8_CJ2izjvnlCG0oNtmzm5P3THFr4ly6fchW9rtcKA45V4YIw004ijenUSbYs6JfD-msMd06IH3vzv6_x3ND9lVVQI</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Betts, John T.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060401</creationdate><title>Trajectory optimization in the presence of uncertainty</title><author>Betts, John T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betts, John T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betts, John T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory optimization in the presence of uncertainty</atitle><jtitle>The Journal of the astronautical sciences</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>54</volume><issue>2</issue><spage>227</spage><epage>243</epage><pages>227-243</pages><issn>0021-9142</issn><abstract>The design of a trajectory for an aerospace vehicle can be formulated using modern optimal control and/or nonlinear programming techniques. Typically, the optimal trajectory is constructed assuming an ideal operating environment and conditions. In practice, of course, conditions are seldom ideal. A real vehicle must have some mechanism to compensate for 'off-nominal' conditions. Environmental factors such as temperature, and atmospheric pressure, as well as 'imperfections' caused by uncertainty in the manufacturing process, all contribute to uncertainty in the performance of a vehicle. This paper describes how modem trajectory optimization techniques can incorporate statistical constraints as part of the mission design process to compensate for uncertainty.</abstract><doi>10.1007/BF03256484</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9142
ispartof The Journal of the astronautical sciences, 2006-04, Vol.54 (2), p.227-243
issn 0021-9142
language eng
recordid cdi_proquest_miscellaneous_29949132
source Springer Link
title Trajectory optimization in the presence of uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20optimization%20in%20the%20presence%20of%20uncertainty&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Betts,%20John%20T.&rft.date=2006-04-01&rft.volume=54&rft.issue=2&rft.spage=227&rft.epage=243&rft.pages=227-243&rft.issn=0021-9142&rft_id=info:doi/10.1007/BF03256484&rft_dat=%3Cproquest_cross%3E29949132%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c192t-188a10d286e7d7e72f65acec3f4a45a79546ad11f5cf6bead5e8fddd59eac1673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29949132&rft_id=info:pmid/&rfr_iscdi=true