Loading…

Surface characteristics and corrosion behavior of Ti–Al–Zr alloy implanted with Al and Nb

Ti–Al–Zr alloys were implanted with Al and Nb to doses ranging from 1 × 10 17 to 1 × 10 18 ions cm −2. The valence states of element on the sample surfaces were analyzed by X-ray photoelectron spectroscopy (XPS). Glancing angle X-ray diffraction (GAXRD) was employed on the as-implanted specimens to...

Full description

Saved in:
Bibliographic Details
Published in:Corrosion science 2007-03, Vol.49 (3), p.1069-1080
Main Authors: Liu, Y.Z., Zu, X.T., Li, C., Qiu, S.Y., Huang, X.Q., Wang, L.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3
cites cdi_FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3
container_end_page 1080
container_issue 3
container_start_page 1069
container_title Corrosion science
container_volume 49
creator Liu, Y.Z.
Zu, X.T.
Li, C.
Qiu, S.Y.
Huang, X.Q.
Wang, L.M.
description Ti–Al–Zr alloys were implanted with Al and Nb to doses ranging from 1 × 10 17 to 1 × 10 18 ions cm −2. The valence states of element on the sample surfaces were analyzed by X-ray photoelectron spectroscopy (XPS). Glancing angle X-ray diffraction (GAXRD) was employed on the as-implanted specimens to understand phase formation. X-ray diffraction (XRD) measurement revealed α-Ti on Al-implanted samples and (α + β)-Ti on Nb-implanted samples. The tendency was observed in increasing corrosion resistance from α- toward (α + β)-phase. In deaerated 5 M HCl, the ion-implanted Ti–Al–Zr surface containing Nb-stabilized β-phase was spontaneously passive, while Al-implanted surface displaying an active/passive behavior. In the aerated solution with pH = 10, all the implanted surfaces are passive. Enhanced reoxidation was confirmed on implanted surfaces by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis. The corrosion in the solution with pH = 10 was governed by a predominantly TiO 2 surface film. The cathodic kinetics was seen to affect the corrosion behavior in 5 M HCl.
doi_str_mv 10.1016/j.corsci.2006.06.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29957967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X06002344</els_id><sourcerecordid>29957967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLg-vgDD7nobdZkMjPJXIRFfIHowT2IICHT02GzzE7WZFbx5j_4h36JWVfwJjTdUFRVdxchR5yNOePV6XwMPkRw45yxaryuXG2REVeyzlhRV9tkxBhnWS3U4y7Zi3HOGMsTMiLPD6tgDSCFmQkGBgwuDg4iNX1Lk2vw0fmeNjgzr84H6i2duq-Pz0mX2lOgpuv8O3WLZWf6AVv65oYZnXQ_8rvmgOxY00U8_J37ZHp5MT2_zm7vr27OJ7cZiEoOmSigtEw1rWhEi1VpS1EzqyyiAMOBmzwhiBKUKiU3ksmmslAWvFFYFq3YJycb22XwLyuMg164CNilm9Cvos7rupR1JROx2BAh_RUDWr0MbmHCu-ZMr6PUc72JUq-j1OvKVZId__qbCKazwfTg4p9WlUpIkSfe2YaH6ddXh0EnJ-wBWxcQBt169_-ib28CjsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29957967</pqid></control><display><type>article</type><title>Surface characteristics and corrosion behavior of Ti–Al–Zr alloy implanted with Al and Nb</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Y.Z. ; Zu, X.T. ; Li, C. ; Qiu, S.Y. ; Huang, X.Q. ; Wang, L.M.</creator><creatorcontrib>Liu, Y.Z. ; Zu, X.T. ; Li, C. ; Qiu, S.Y. ; Huang, X.Q. ; Wang, L.M.</creatorcontrib><description>Ti–Al–Zr alloys were implanted with Al and Nb to doses ranging from 1 × 10 17 to 1 × 10 18 ions cm −2. The valence states of element on the sample surfaces were analyzed by X-ray photoelectron spectroscopy (XPS). Glancing angle X-ray diffraction (GAXRD) was employed on the as-implanted specimens to understand phase formation. X-ray diffraction (XRD) measurement revealed α-Ti on Al-implanted samples and (α + β)-Ti on Nb-implanted samples. The tendency was observed in increasing corrosion resistance from α- toward (α + β)-phase. In deaerated 5 M HCl, the ion-implanted Ti–Al–Zr surface containing Nb-stabilized β-phase was spontaneously passive, while Al-implanted surface displaying an active/passive behavior. In the aerated solution with pH = 10, all the implanted surfaces are passive. Enhanced reoxidation was confirmed on implanted surfaces by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis. The corrosion in the solution with pH = 10 was governed by a predominantly TiO 2 surface film. The cathodic kinetics was seen to affect the corrosion behavior in 5 M HCl.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2006.06.028</identifier><identifier>CODEN: CRRSAA</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Al and Nb ion implantation ; Applied sciences ; Corrosion ; Corrosion environments ; Exact sciences and technology ; Metals. Metallurgy ; Other surface treatments ; Phase formation ; Production techniques ; Surface treatment ; Ti–Al–Zr alloy</subject><ispartof>Corrosion science, 2007-03, Vol.49 (3), p.1069-1080</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3</citedby><cites>FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18583732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y.Z.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Qiu, S.Y.</creatorcontrib><creatorcontrib>Huang, X.Q.</creatorcontrib><creatorcontrib>Wang, L.M.</creatorcontrib><title>Surface characteristics and corrosion behavior of Ti–Al–Zr alloy implanted with Al and Nb</title><title>Corrosion science</title><description>Ti–Al–Zr alloys were implanted with Al and Nb to doses ranging from 1 × 10 17 to 1 × 10 18 ions cm −2. The valence states of element on the sample surfaces were analyzed by X-ray photoelectron spectroscopy (XPS). Glancing angle X-ray diffraction (GAXRD) was employed on the as-implanted specimens to understand phase formation. X-ray diffraction (XRD) measurement revealed α-Ti on Al-implanted samples and (α + β)-Ti on Nb-implanted samples. The tendency was observed in increasing corrosion resistance from α- toward (α + β)-phase. In deaerated 5 M HCl, the ion-implanted Ti–Al–Zr surface containing Nb-stabilized β-phase was spontaneously passive, while Al-implanted surface displaying an active/passive behavior. In the aerated solution with pH = 10, all the implanted surfaces are passive. Enhanced reoxidation was confirmed on implanted surfaces by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis. The corrosion in the solution with pH = 10 was governed by a predominantly TiO 2 surface film. The cathodic kinetics was seen to affect the corrosion behavior in 5 M HCl.</description><subject>Al and Nb ion implantation</subject><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><subject>Other surface treatments</subject><subject>Phase formation</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Ti–Al–Zr alloy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLg-vgDD7nobdZkMjPJXIRFfIHowT2IICHT02GzzE7WZFbx5j_4h36JWVfwJjTdUFRVdxchR5yNOePV6XwMPkRw45yxaryuXG2REVeyzlhRV9tkxBhnWS3U4y7Zi3HOGMsTMiLPD6tgDSCFmQkGBgwuDg4iNX1Lk2vw0fmeNjgzr84H6i2duq-Pz0mX2lOgpuv8O3WLZWf6AVv65oYZnXQ_8rvmgOxY00U8_J37ZHp5MT2_zm7vr27OJ7cZiEoOmSigtEw1rWhEi1VpS1EzqyyiAMOBmzwhiBKUKiU3ksmmslAWvFFYFq3YJycb22XwLyuMg164CNilm9Cvos7rupR1JROx2BAh_RUDWr0MbmHCu-ZMr6PUc72JUq-j1OvKVZId__qbCKazwfTg4p9WlUpIkSfe2YaH6ddXh0EnJ-wBWxcQBt169_-ib28CjsU</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Liu, Y.Z.</creator><creator>Zu, X.T.</creator><creator>Li, C.</creator><creator>Qiu, S.Y.</creator><creator>Huang, X.Q.</creator><creator>Wang, L.M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070301</creationdate><title>Surface characteristics and corrosion behavior of Ti–Al–Zr alloy implanted with Al and Nb</title><author>Liu, Y.Z. ; Zu, X.T. ; Li, C. ; Qiu, S.Y. ; Huang, X.Q. ; Wang, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Al and Nb ion implantation</topic><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><topic>Other surface treatments</topic><topic>Phase formation</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Ti–Al–Zr alloy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.Z.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Qiu, S.Y.</creatorcontrib><creatorcontrib>Huang, X.Q.</creatorcontrib><creatorcontrib>Wang, L.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.Z.</au><au>Zu, X.T.</au><au>Li, C.</au><au>Qiu, S.Y.</au><au>Huang, X.Q.</au><au>Wang, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface characteristics and corrosion behavior of Ti–Al–Zr alloy implanted with Al and Nb</atitle><jtitle>Corrosion science</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>49</volume><issue>3</issue><spage>1069</spage><epage>1080</epage><pages>1069-1080</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><coden>CRRSAA</coden><abstract>Ti–Al–Zr alloys were implanted with Al and Nb to doses ranging from 1 × 10 17 to 1 × 10 18 ions cm −2. The valence states of element on the sample surfaces were analyzed by X-ray photoelectron spectroscopy (XPS). Glancing angle X-ray diffraction (GAXRD) was employed on the as-implanted specimens to understand phase formation. X-ray diffraction (XRD) measurement revealed α-Ti on Al-implanted samples and (α + β)-Ti on Nb-implanted samples. The tendency was observed in increasing corrosion resistance from α- toward (α + β)-phase. In deaerated 5 M HCl, the ion-implanted Ti–Al–Zr surface containing Nb-stabilized β-phase was spontaneously passive, while Al-implanted surface displaying an active/passive behavior. In the aerated solution with pH = 10, all the implanted surfaces are passive. Enhanced reoxidation was confirmed on implanted surfaces by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis. The corrosion in the solution with pH = 10 was governed by a predominantly TiO 2 surface film. The cathodic kinetics was seen to affect the corrosion behavior in 5 M HCl.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2006.06.028</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2007-03, Vol.49 (3), p.1069-1080
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_miscellaneous_29957967
source ScienceDirect Freedom Collection 2022-2024
subjects Al and Nb ion implantation
Applied sciences
Corrosion
Corrosion environments
Exact sciences and technology
Metals. Metallurgy
Other surface treatments
Phase formation
Production techniques
Surface treatment
Ti–Al–Zr alloy
title Surface characteristics and corrosion behavior of Ti–Al–Zr alloy implanted with Al and Nb
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20characteristics%20and%20corrosion%20behavior%20of%20Ti%E2%80%93Al%E2%80%93Zr%20alloy%20implanted%20with%20Al%20and%20Nb&rft.jtitle=Corrosion%20science&rft.au=Liu,%20Y.Z.&rft.date=2007-03-01&rft.volume=49&rft.issue=3&rft.spage=1069&rft.epage=1080&rft.pages=1069-1080&rft.issn=0010-938X&rft.eissn=1879-0496&rft.coden=CRRSAA&rft_id=info:doi/10.1016/j.corsci.2006.06.028&rft_dat=%3Cproquest_cross%3E29957967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-34c5f08bd3b3de65f5390f8fee3ca1c1a2f53ee7c88571a707b6fc541b8e54d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29957967&rft_id=info:pmid/&rfr_iscdi=true