Loading…
The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites
The creation of highly oriented, co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composites, with a large temperature processing window and a high volume fraction of highly oriented PP (>90%). The wholly thermoplastic nature of these ‘self-rei...
Saved in:
Published in: | Composites science and technology 2007-08, Vol.67 (10), p.2061-2070 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The creation of highly oriented, co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composites, with a large temperature processing window and a high volume fraction of highly oriented PP (>90%). The wholly thermoplastic nature of these ‘self-reinforced’ composites implies that the mechanical performance may vary with temperature. This paper describes the mechanical performance of all-PP composites by measuring the mechanical properties of highly oriented PP tapes and subsequent all-PP composites at a range of temperatures by static and dynamic testing methods. The time–temperature equivalence of all-PP composites is investigated by creating mastercurves of dynamic modulus and tensile strength. A comparison of the performance of these composites with commercial glass fibre reinforced polypropylene composites is included. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2006.11.012 |