Loading…
Exact solutions of the Navier–Stokes equations having steady vortex structures
We present two classes of exact solutions of the Navier–Stokes equations, which describe steady vortex structures with two-dimensional symmetry in an infinite fluid. The first is a class of similarity solutions obtained by conformal mapping of the Burgers vortex sheet to produce wavy sheets, stars,...
Saved in:
Published in: | Journal of fluid mechanics 2005-10, Vol.541 (1), p.55-64 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-f1175b4a14010cb793824ccbf0bcc67b7b68368a5e20347ff1af1a11394987713 |
---|---|
cites | |
container_end_page | 64 |
container_issue | 1 |
container_start_page | 55 |
container_title | Journal of fluid mechanics |
container_volume | 541 |
creator | BAZANT, M. Z. MOFFATT, H. K. |
description | We present two classes of exact solutions of the Navier–Stokes equations, which describe steady vortex structures with two-dimensional symmetry in an infinite fluid. The first is a class of similarity solutions obtained by conformal mapping of the Burgers vortex sheet to produce wavy sheets, stars, flowers and other vorticity patterns. The second is a class of non-similarity solutions obtained by continuation and mapping of the classical solution to steady advection–diffusion around a finite circular absorber in a two-dimensional potential flow, resulting in more complicated vortex structures that we describe as avenues, fishbones, wheels, eyes and butterflies. These solutions exhibit a transition from ‘clouds’ to ‘wakes’ of vorticity in the transverse flow with increasing Reynolds number. Our solutions provide useful test cases for numerical simulations, and some may be observable in experiments, although we expect instabilities at high Reynolds number. For example, vortex avenues may be related to counter-rotating vortex pairs in transverse jets, and they may provide a practical means to extend jets from dilution holes, fuel injectors, and smokestacks into crossflows. |
doi_str_mv | 10.1017/S0022112005006130 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29965526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112005006130</cupid><sourcerecordid>1399152951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f1175b4a14010cb793824ccbf0bcc67b7b68368a5e20347ff1af1a11394987713</originalsourceid><addsrcrecordid>eNp1kNFKHDEUhoNUcLv1AbwbCu3d6DnJTDK5LLKuVtEW9TpkYkZnd3biJhlZ73yHvmGfxCy7KLRIAiH83zl8_IQcIBwioDi6BqAUkQKUABwZ7JARFlzmghflJzJax_k63yOfQ5gBJESKEfk1WWkTs-C6IbauD5lrsvhgs0v91Fr_9-XPdXRzGzK7HPQGeEhJf5-FaPXdc_bkfLSr9PODiYO34QvZbXQX7P72HZPbk8nN8Wl-cTU9O_5xkZuCs5g3iKKsC40FIJhaSFbRwpi6gdoYLmpR84rxSpeWAitE06BOF5HJQlZCIBuT75u9j94tBxuiWrTB2K7TvXVDUFRKXpaUJ_DrP-DMDb5PbooiSICK0QThBjLeheBtox59u9D-WSGodcHqv4LTzLftYh2M7hqve9OG90FBGRPpjEm-4drU2eot136ueMpLxae_Fec_6flUVmotzLYuelH79u7evht_bPMKVXiYiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210900832</pqid></control><display><type>article</type><title>Exact solutions of the Navier–Stokes equations having steady vortex structures</title><source>Cambridge University Press</source><creator>BAZANT, M. Z. ; MOFFATT, H. K.</creator><creatorcontrib>BAZANT, M. Z. ; MOFFATT, H. K.</creatorcontrib><description>We present two classes of exact solutions of the Navier–Stokes equations, which describe steady vortex structures with two-dimensional symmetry in an infinite fluid. The first is a class of similarity solutions obtained by conformal mapping of the Burgers vortex sheet to produce wavy sheets, stars, flowers and other vorticity patterns. The second is a class of non-similarity solutions obtained by continuation and mapping of the classical solution to steady advection–diffusion around a finite circular absorber in a two-dimensional potential flow, resulting in more complicated vortex structures that we describe as avenues, fishbones, wheels, eyes and butterflies. These solutions exhibit a transition from ‘clouds’ to ‘wakes’ of vorticity in the transverse flow with increasing Reynolds number. Our solutions provide useful test cases for numerical simulations, and some may be observable in experiments, although we expect instabilities at high Reynolds number. For example, vortex avenues may be related to counter-rotating vortex pairs in transverse jets, and they may provide a practical means to extend jets from dilution holes, fuel injectors, and smokestacks into crossflows.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112005006130</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Navier-Stokes equations ; Physics ; Potential flow ; Reynolds number</subject><ispartof>Journal of fluid mechanics, 2005-10, Vol.541 (1), p.55-64</ispartof><rights>2005 Cambridge University Press</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-f1175b4a14010cb793824ccbf0bcc67b7b68368a5e20347ff1af1a11394987713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112005006130/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17233737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAZANT, M. Z.</creatorcontrib><creatorcontrib>MOFFATT, H. K.</creatorcontrib><title>Exact solutions of the Navier–Stokes equations having steady vortex structures</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We present two classes of exact solutions of the Navier–Stokes equations, which describe steady vortex structures with two-dimensional symmetry in an infinite fluid. The first is a class of similarity solutions obtained by conformal mapping of the Burgers vortex sheet to produce wavy sheets, stars, flowers and other vorticity patterns. The second is a class of non-similarity solutions obtained by continuation and mapping of the classical solution to steady advection–diffusion around a finite circular absorber in a two-dimensional potential flow, resulting in more complicated vortex structures that we describe as avenues, fishbones, wheels, eyes and butterflies. These solutions exhibit a transition from ‘clouds’ to ‘wakes’ of vorticity in the transverse flow with increasing Reynolds number. Our solutions provide useful test cases for numerical simulations, and some may be observable in experiments, although we expect instabilities at high Reynolds number. For example, vortex avenues may be related to counter-rotating vortex pairs in transverse jets, and they may provide a practical means to extend jets from dilution holes, fuel injectors, and smokestacks into crossflows.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Potential flow</subject><subject>Reynolds number</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKHDEUhoNUcLv1AbwbCu3d6DnJTDK5LLKuVtEW9TpkYkZnd3biJhlZ73yHvmGfxCy7KLRIAiH83zl8_IQcIBwioDi6BqAUkQKUABwZ7JARFlzmghflJzJax_k63yOfQ5gBJESKEfk1WWkTs-C6IbauD5lrsvhgs0v91Fr_9-XPdXRzGzK7HPQGeEhJf5-FaPXdc_bkfLSr9PODiYO34QvZbXQX7P72HZPbk8nN8Wl-cTU9O_5xkZuCs5g3iKKsC40FIJhaSFbRwpi6gdoYLmpR84rxSpeWAitE06BOF5HJQlZCIBuT75u9j94tBxuiWrTB2K7TvXVDUFRKXpaUJ_DrP-DMDb5PbooiSICK0QThBjLeheBtox59u9D-WSGodcHqv4LTzLftYh2M7hqve9OG90FBGRPpjEm-4drU2eot136ueMpLxae_Fec_6flUVmotzLYuelH79u7evht_bPMKVXiYiA</recordid><startdate>20051025</startdate><enddate>20051025</enddate><creator>BAZANT, M. Z.</creator><creator>MOFFATT, H. K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20051025</creationdate><title>Exact solutions of the Navier–Stokes equations having steady vortex structures</title><author>BAZANT, M. Z. ; MOFFATT, H. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f1175b4a14010cb793824ccbf0bcc67b7b68368a5e20347ff1af1a11394987713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Potential flow</topic><topic>Reynolds number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAZANT, M. Z.</creatorcontrib><creatorcontrib>MOFFATT, H. K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAZANT, M. Z.</au><au>MOFFATT, H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solutions of the Navier–Stokes equations having steady vortex structures</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2005-10-25</date><risdate>2005</risdate><volume>541</volume><issue>1</issue><spage>55</spage><epage>64</epage><pages>55-64</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We present two classes of exact solutions of the Navier–Stokes equations, which describe steady vortex structures with two-dimensional symmetry in an infinite fluid. The first is a class of similarity solutions obtained by conformal mapping of the Burgers vortex sheet to produce wavy sheets, stars, flowers and other vorticity patterns. The second is a class of non-similarity solutions obtained by continuation and mapping of the classical solution to steady advection–diffusion around a finite circular absorber in a two-dimensional potential flow, resulting in more complicated vortex structures that we describe as avenues, fishbones, wheels, eyes and butterflies. These solutions exhibit a transition from ‘clouds’ to ‘wakes’ of vorticity in the transverse flow with increasing Reynolds number. Our solutions provide useful test cases for numerical simulations, and some may be observable in experiments, although we expect instabilities at high Reynolds number. For example, vortex avenues may be related to counter-rotating vortex pairs in transverse jets, and they may provide a practical means to extend jets from dilution holes, fuel injectors, and smokestacks into crossflows.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112005006130</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2005-10, Vol.541 (1), p.55-64 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_29965526 |
source | Cambridge University Press |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Navier-Stokes equations Physics Potential flow Reynolds number |
title | Exact solutions of the Navier–Stokes equations having steady vortex structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solutions%20of%20the%20Navier%E2%80%93Stokes%20equations%20having%20steady%20vortex%20structures&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=BAZANT,%20M.%20Z.&rft.date=2005-10-25&rft.volume=541&rft.issue=1&rft.spage=55&rft.epage=64&rft.pages=55-64&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112005006130&rft_dat=%3Cproquest_cross%3E1399152951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-f1175b4a14010cb793824ccbf0bcc67b7b68368a5e20347ff1af1a11394987713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210900832&rft_id=info:pmid/&rft_cupid=10_1017_S0022112005006130&rfr_iscdi=true |