Loading…

Straightforward planarization method for multilayered SFQ device fabrication

We developed a method of planarization that can be used to fabricate large-scale single-flux-quantum (SFQ) circuits with more than 100-k junctions. Most conventional planarization methods have problems with being able to obtain sufficient planarity in devices with Nb wiring having various pattern si...

Full description

Saved in:
Bibliographic Details
Published in:Physica. C, Superconductivity Superconductivity, 2004-10, Vol.412, p.1437-1441
Main Authors: Hinode, Kenji, Nagasawa, Shuichi, Sugita, Masao, Satoh, Tetsuro, Akaike, Hiroyuki, Kitagawa, Yoshihiro, Hidaka, Mutsuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83
cites cdi_FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83
container_end_page 1441
container_issue
container_start_page 1437
container_title Physica. C, Superconductivity
container_volume 412
creator Hinode, Kenji
Nagasawa, Shuichi
Sugita, Masao
Satoh, Tetsuro
Akaike, Hiroyuki
Kitagawa, Yoshihiro
Hidaka, Mutsuo
description We developed a method of planarization that can be used to fabricate large-scale single-flux-quantum (SFQ) circuits with more than 100-k junctions. Most conventional planarization methods have problems with being able to obtain sufficient planarity in devices with Nb wiring having various pattern sizes and area densities ( pattern dependence problem). We eliminate this pattern dependence problem directly by removing the convex areas of SiO 2 insulator layer covering Nb wiring layer using the Nb wiring pattern array information. The practical process involves the combination of three steps to form the SiO 2 insulator layer, i.e., (1) bias-sputtering, (2) etching with a reversal mask of the underneath wiring pattern, and (3) chemical mechanical polishing. The two- to six-level wiring structures we fabricated, consisting of 300-nm-thick Nb and SiO 2 layers, had excellent layer flatness, independent of the wiring characteristics (width, length, and density). The electrical characteristics also remained at satisfactory levels, i.e., the leakage current between the Nb layers was sufficiently low. Two hundred to four thousand chains of stepwise and stacked contacts yielded a sufficiently large critical current, typically more than 10 mA at 4.2 K, which is two orders of magnitude larger than the critical current of Josephson junctions.
doi_str_mv 10.1016/j.physc.2003.12.091
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29966751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921453404009001</els_id><sourcerecordid>29966751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83</originalsourceid><addsrcrecordid>eNp9kD1Pw0AMhk8IJErhF7BkYku4j3zdwIAqCkiVECrMJ8fn0KuSJtylReXXE1pmvHjw-1j2w9i14IngIr9dJ_1qHzCRnKtEyIRrccImoixULEWqTtmEayniNFPpObsIYc3HElpM2GI5eHAfq6Hu_Bd4G_UNbMC7bxhct4laGladjcZh1G6bwTWwJ082Ws5fI0s7hxTVUHmHh_glO6uhCXT116fsff7wNnuKFy-Pz7P7RYxKl0NcaYU5pkVpeW5RFAioFdRlVaWouQRpQVvKoFaZLCUAFyUVNkVCUFrYUk3ZzXFv77vPLYXBtC4gNePp1G2DkVrneZGJMaiOQfRdCJ5q03vXgt8bwc2vObM2B3Pm15wR0ozmRuruSNH4w86RNwEdbZCs84SDsZ37l_8B7gp6ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29966751</pqid></control><display><type>article</type><title>Straightforward planarization method for multilayered SFQ device fabrication</title><source>ScienceDirect Freedom Collection</source><creator>Hinode, Kenji ; Nagasawa, Shuichi ; Sugita, Masao ; Satoh, Tetsuro ; Akaike, Hiroyuki ; Kitagawa, Yoshihiro ; Hidaka, Mutsuo</creator><creatorcontrib>Hinode, Kenji ; Nagasawa, Shuichi ; Sugita, Masao ; Satoh, Tetsuro ; Akaike, Hiroyuki ; Kitagawa, Yoshihiro ; Hidaka, Mutsuo</creatorcontrib><description>We developed a method of planarization that can be used to fabricate large-scale single-flux-quantum (SFQ) circuits with more than 100-k junctions. Most conventional planarization methods have problems with being able to obtain sufficient planarity in devices with Nb wiring having various pattern sizes and area densities ( pattern dependence problem). We eliminate this pattern dependence problem directly by removing the convex areas of SiO 2 insulator layer covering Nb wiring layer using the Nb wiring pattern array information. The practical process involves the combination of three steps to form the SiO 2 insulator layer, i.e., (1) bias-sputtering, (2) etching with a reversal mask of the underneath wiring pattern, and (3) chemical mechanical polishing. The two- to six-level wiring structures we fabricated, consisting of 300-nm-thick Nb and SiO 2 layers, had excellent layer flatness, independent of the wiring characteristics (width, length, and density). The electrical characteristics also remained at satisfactory levels, i.e., the leakage current between the Nb layers was sufficiently low. Two hundred to four thousand chains of stepwise and stacked contacts yielded a sufficiently large critical current, typically more than 10 mA at 4.2 K, which is two orders of magnitude larger than the critical current of Josephson junctions.</description><identifier>ISSN: 0921-4534</identifier><identifier>EISSN: 1873-2143</identifier><identifier>DOI: 10.1016/j.physc.2003.12.091</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Multilevel wiring ; Nb SFQ ; Planarization ; Reversal mask</subject><ispartof>Physica. C, Superconductivity, 2004-10, Vol.412, p.1437-1441</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83</citedby><cites>FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hinode, Kenji</creatorcontrib><creatorcontrib>Nagasawa, Shuichi</creatorcontrib><creatorcontrib>Sugita, Masao</creatorcontrib><creatorcontrib>Satoh, Tetsuro</creatorcontrib><creatorcontrib>Akaike, Hiroyuki</creatorcontrib><creatorcontrib>Kitagawa, Yoshihiro</creatorcontrib><creatorcontrib>Hidaka, Mutsuo</creatorcontrib><title>Straightforward planarization method for multilayered SFQ device fabrication</title><title>Physica. C, Superconductivity</title><description>We developed a method of planarization that can be used to fabricate large-scale single-flux-quantum (SFQ) circuits with more than 100-k junctions. Most conventional planarization methods have problems with being able to obtain sufficient planarity in devices with Nb wiring having various pattern sizes and area densities ( pattern dependence problem). We eliminate this pattern dependence problem directly by removing the convex areas of SiO 2 insulator layer covering Nb wiring layer using the Nb wiring pattern array information. The practical process involves the combination of three steps to form the SiO 2 insulator layer, i.e., (1) bias-sputtering, (2) etching with a reversal mask of the underneath wiring pattern, and (3) chemical mechanical polishing. The two- to six-level wiring structures we fabricated, consisting of 300-nm-thick Nb and SiO 2 layers, had excellent layer flatness, independent of the wiring characteristics (width, length, and density). The electrical characteristics also remained at satisfactory levels, i.e., the leakage current between the Nb layers was sufficiently low. Two hundred to four thousand chains of stepwise and stacked contacts yielded a sufficiently large critical current, typically more than 10 mA at 4.2 K, which is two orders of magnitude larger than the critical current of Josephson junctions.</description><subject>Multilevel wiring</subject><subject>Nb SFQ</subject><subject>Planarization</subject><subject>Reversal mask</subject><issn>0921-4534</issn><issn>1873-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kD1Pw0AMhk8IJErhF7BkYku4j3zdwIAqCkiVECrMJ8fn0KuSJtylReXXE1pmvHjw-1j2w9i14IngIr9dJ_1qHzCRnKtEyIRrccImoixULEWqTtmEayniNFPpObsIYc3HElpM2GI5eHAfq6Hu_Bd4G_UNbMC7bxhct4laGladjcZh1G6bwTWwJ082Ws5fI0s7hxTVUHmHh_glO6uhCXT116fsff7wNnuKFy-Pz7P7RYxKl0NcaYU5pkVpeW5RFAioFdRlVaWouQRpQVvKoFaZLCUAFyUVNkVCUFrYUk3ZzXFv77vPLYXBtC4gNePp1G2DkVrneZGJMaiOQfRdCJ5q03vXgt8bwc2vObM2B3Pm15wR0ozmRuruSNH4w86RNwEdbZCs84SDsZ37l_8B7gp6ng</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Hinode, Kenji</creator><creator>Nagasawa, Shuichi</creator><creator>Sugita, Masao</creator><creator>Satoh, Tetsuro</creator><creator>Akaike, Hiroyuki</creator><creator>Kitagawa, Yoshihiro</creator><creator>Hidaka, Mutsuo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041001</creationdate><title>Straightforward planarization method for multilayered SFQ device fabrication</title><author>Hinode, Kenji ; Nagasawa, Shuichi ; Sugita, Masao ; Satoh, Tetsuro ; Akaike, Hiroyuki ; Kitagawa, Yoshihiro ; Hidaka, Mutsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Multilevel wiring</topic><topic>Nb SFQ</topic><topic>Planarization</topic><topic>Reversal mask</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinode, Kenji</creatorcontrib><creatorcontrib>Nagasawa, Shuichi</creatorcontrib><creatorcontrib>Sugita, Masao</creatorcontrib><creatorcontrib>Satoh, Tetsuro</creatorcontrib><creatorcontrib>Akaike, Hiroyuki</creatorcontrib><creatorcontrib>Kitagawa, Yoshihiro</creatorcontrib><creatorcontrib>Hidaka, Mutsuo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. C, Superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinode, Kenji</au><au>Nagasawa, Shuichi</au><au>Sugita, Masao</au><au>Satoh, Tetsuro</au><au>Akaike, Hiroyuki</au><au>Kitagawa, Yoshihiro</au><au>Hidaka, Mutsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Straightforward planarization method for multilayered SFQ device fabrication</atitle><jtitle>Physica. C, Superconductivity</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>412</volume><spage>1437</spage><epage>1441</epage><pages>1437-1441</pages><issn>0921-4534</issn><eissn>1873-2143</eissn><abstract>We developed a method of planarization that can be used to fabricate large-scale single-flux-quantum (SFQ) circuits with more than 100-k junctions. Most conventional planarization methods have problems with being able to obtain sufficient planarity in devices with Nb wiring having various pattern sizes and area densities ( pattern dependence problem). We eliminate this pattern dependence problem directly by removing the convex areas of SiO 2 insulator layer covering Nb wiring layer using the Nb wiring pattern array information. The practical process involves the combination of three steps to form the SiO 2 insulator layer, i.e., (1) bias-sputtering, (2) etching with a reversal mask of the underneath wiring pattern, and (3) chemical mechanical polishing. The two- to six-level wiring structures we fabricated, consisting of 300-nm-thick Nb and SiO 2 layers, had excellent layer flatness, independent of the wiring characteristics (width, length, and density). The electrical characteristics also remained at satisfactory levels, i.e., the leakage current between the Nb layers was sufficiently low. Two hundred to four thousand chains of stepwise and stacked contacts yielded a sufficiently large critical current, typically more than 10 mA at 4.2 K, which is two orders of magnitude larger than the critical current of Josephson junctions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physc.2003.12.091</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4534
ispartof Physica. C, Superconductivity, 2004-10, Vol.412, p.1437-1441
issn 0921-4534
1873-2143
language eng
recordid cdi_proquest_miscellaneous_29966751
source ScienceDirect Freedom Collection
subjects Multilevel wiring
Nb SFQ
Planarization
Reversal mask
title Straightforward planarization method for multilayered SFQ device fabrication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Straightforward%20planarization%20method%20for%20multilayered%20SFQ%20device%20fabrication&rft.jtitle=Physica.%20C,%20Superconductivity&rft.au=Hinode,%20Kenji&rft.date=2004-10-01&rft.volume=412&rft.spage=1437&rft.epage=1441&rft.pages=1437-1441&rft.issn=0921-4534&rft.eissn=1873-2143&rft_id=info:doi/10.1016/j.physc.2003.12.091&rft_dat=%3Cproquest_cross%3E29966751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-b93c6c478d06dc17cac93af8bb4c902a2da9de5af35282aa018e7d4ceca391d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29966751&rft_id=info:pmid/&rfr_iscdi=true