Loading…

Large-Eddy Simulation (LES) of Large Hydrocyclones

Fluid dynamics theory applied to the hydrocyclone flow field has progressed in past experimental and theoretical investigations from a two-dimensional Prandtl mixing-length turbulence modeling to the current level of three-dimensional large-eddy simulation (LES) and differential-stress approaches. T...

Full description

Saved in:
Bibliographic Details
Published in:Particulate science and technology 2007-06, Vol.25 (3), p.227-245
Main Authors: Delgadillo, Jose A., Rajamani, Raj K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluid dynamics theory applied to the hydrocyclone flow field has progressed in past experimental and theoretical investigations from a two-dimensional Prandtl mixing-length turbulence modeling to the current level of three-dimensional large-eddy simulation (LES) and differential-stress approaches. The LES approach eliminates the explicit empiricism that is imposed in the κ-ϵ model. Turbulence in hydrocyclones is anisotropic. Since only the subgrid scales are modeled in LES, the anisotropy is largely taken care of in this approach. This article presents validation of the LES model with laser-anemometry data collected on 75 mm and 250 mm hydrocyclones. Verification with experimental data on mass split, axial velocity, tangential velocity, root-mean-squared velocity, air-core profile, and size classification clearly stands as a proof that LES can be applied to even larger hydrocyclones.
ISSN:0272-6351
1548-0046
DOI:10.1080/02726350701375774