Loading…

Decay of photo-excited conductivity of Er-doped SnO2 thin films

Er-doped SnO2 thin films, obtained by sol-gel-dip-coating technique, were submitted to excitation with the 4th harmonic of a Nd:YAG laser (266 nm), at low temperature, and a conductivity decay is observed when the illumination is removed. This decay is modeled by considering a thermally activated cr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2007-04, Vol.42 (7), p.2216-2221
Main Authors: MORAIS, Evandro A, SCALVI, Luis V. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Er-doped SnO2 thin films, obtained by sol-gel-dip-coating technique, were submitted to excitation with the 4th harmonic of a Nd:YAG laser (266 nm), at low temperature, and a conductivity decay is observed when the illumination is removed. This decay is modeled by considering a thermally activated cross section of an Er-related trapping center. Besides, grain boundary scattering is considered as dominant for electronic mobility. X-ray diffraction data show a characteristic profile of nanoscopic crystallite material (grain average size ≈5 nm) in agreement with this model. Temperature dependent and concentration dependent decays are measured and the capture barrier is evaluated from the model, yielding 100 meV for SnO2:0.1% Er and 148 meV for SnO2:4% Er.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-006-1320-0