Loading…
Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory
Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of exper...
Saved in:
Published in: | Journal of the American Ceramic Society 2007-02, Vol.90 (2), p.509-515 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403 |
---|---|
cites | cdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403 |
container_end_page | 515 |
container_issue | 2 |
container_start_page | 509 |
container_title | Journal of the American Ceramic Society |
container_volume | 90 |
creator | Sadrnezhaad, S. K. Nemati, Z. A. Mahshid, S. Hosseini, S. Hashemi, B. |
description | Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T>800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T>800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C. |
doi_str_mv | 10.1111/j.1551-2916.2006.01391.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29977794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29977794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</originalsourceid><addsrcrecordid>eNqNkNFP2zAQxq1pSOvY_odo0vaWcLaT2H6aqqgrIGilwjTeTq5jQ7qQgJ1q7X-PQxGTeMIvvrvvu59OHyEJhYzGd7LJaFHQlClaZgygzIByRbPdBzJ5FT6SCQCwVEgGn8jnEDaxpUrmE7KcOWfNkPQumbbJtBuaftfUuouTLhnubLLSgx3V5TiOajc2lfbrWDVdcnm7TKtkZZ3XZuj9_gs5croN9uvLf0x-_5pdV6fpxXJ-Vk0vUpPnlKbOCGaos2XNFZN8DaVzyjLFhLCOQmFKJmFd0pobBroWYCSvHeSFXte6zIEfkx8H7oPvH7c2DHjfBGPbVne23wZkSgkhVB6N394YN_3Wd_E2ZFQoTguQ0SQPJuP7ELx1-OCbe-33SAHHmHGDY5o4poljzPgcM-7i6vcXvg5GtzGHzjTh_74suOSliL6fB9-_prX7d_PxfFrNnutISA-EJgx290rQ_i9Gvijwz2KOubq5vikWVyj5EzwQnUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217931508</pqid></control><display><type>article</type><title>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sadrnezhaad, S. K. ; Nemati, Z. A. ; Mahshid, S. ; Hosseini, S. ; Hashemi, B.</creator><creatorcontrib>Sadrnezhaad, S. K. ; Nemati, Z. A. ; Mahshid, S. ; Hosseini, S. ; Hashemi, B.</creatorcontrib><description>Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T>800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T>800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2006.01391.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Aluminum ; Applied sciences ; Basic refractories ; Building materials. Ceramics. Glasses ; Carbon ; Chemical industry and chemicals ; Exact sciences and technology ; Materials science ; Oxidation ; Refractory products</subject><ispartof>Journal of the American Ceramic Society, 2007-02, Vol.90 (2), p.509-515</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Ceramic Society Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</citedby><cites>FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18538367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadrnezhaad, S. K.</creatorcontrib><creatorcontrib>Nemati, Z. A.</creatorcontrib><creatorcontrib>Mahshid, S.</creatorcontrib><creatorcontrib>Hosseini, S.</creatorcontrib><creatorcontrib>Hashemi, B.</creatorcontrib><title>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</title><title>Journal of the American Ceramic Society</title><description>Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T>800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T>800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.</description><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Basic refractories</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Carbon</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Oxidation</subject><subject>Refractory products</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkNFP2zAQxq1pSOvY_odo0vaWcLaT2H6aqqgrIGilwjTeTq5jQ7qQgJ1q7X-PQxGTeMIvvrvvu59OHyEJhYzGd7LJaFHQlClaZgygzIByRbPdBzJ5FT6SCQCwVEgGn8jnEDaxpUrmE7KcOWfNkPQumbbJtBuaftfUuouTLhnubLLSgx3V5TiOajc2lfbrWDVdcnm7TKtkZZ3XZuj9_gs5croN9uvLf0x-_5pdV6fpxXJ-Vk0vUpPnlKbOCGaos2XNFZN8DaVzyjLFhLCOQmFKJmFd0pobBroWYCSvHeSFXte6zIEfkx8H7oPvH7c2DHjfBGPbVne23wZkSgkhVB6N394YN_3Wd_E2ZFQoTguQ0SQPJuP7ELx1-OCbe-33SAHHmHGDY5o4poljzPgcM-7i6vcXvg5GtzGHzjTh_74suOSliL6fB9-_prX7d_PxfFrNnutISA-EJgx290rQ_i9Gvijwz2KOubq5vikWVyj5EzwQnUM</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Sadrnezhaad, S. K.</creator><creator>Nemati, Z. A.</creator><creator>Mahshid, S.</creator><creator>Hosseini, S.</creator><creator>Hashemi, B.</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>200702</creationdate><title>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</title><author>Sadrnezhaad, S. K. ; Nemati, Z. A. ; Mahshid, S. ; Hosseini, S. ; Hashemi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Basic refractories</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Carbon</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Oxidation</topic><topic>Refractory products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadrnezhaad, S. K.</creatorcontrib><creatorcontrib>Nemati, Z. A.</creatorcontrib><creatorcontrib>Mahshid, S.</creatorcontrib><creatorcontrib>Hosseini, S.</creatorcontrib><creatorcontrib>Hashemi, B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadrnezhaad, S. K.</au><au>Nemati, Z. A.</au><au>Mahshid, S.</au><au>Hosseini, S.</au><au>Hashemi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2007-02</date><risdate>2007</risdate><volume>90</volume><issue>2</issue><spage>509</spage><epage>515</epage><pages>509-515</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T>800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T>800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2006.01391.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2007-02, Vol.90 (2), p.509-515 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_29977794 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum Applied sciences Basic refractories Building materials. Ceramics. Glasses Carbon Chemical industry and chemicals Exact sciences and technology Materials science Oxidation Refractory products |
title | Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Al%20Antioxidant%20on%20the%20Rate%20of%20Oxidation%20of%20Carbon%20in%20MgO-C%20Refractory&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Sadrnezhaad,%20S.%20K.&rft.date=2007-02&rft.volume=90&rft.issue=2&rft.spage=509&rft.epage=515&rft.pages=509-515&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2006.01391.x&rft_dat=%3Cproquest_cross%3E29977794%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217931508&rft_id=info:pmid/&rfr_iscdi=true |