Loading…

Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory

Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of exper...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2007-02, Vol.90 (2), p.509-515
Main Authors: Sadrnezhaad, S. K., Nemati, Z. A., Mahshid, S., Hosseini, S., Hashemi, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403
cites cdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403
container_end_page 515
container_issue 2
container_start_page 509
container_title Journal of the American Ceramic Society
container_volume 90
creator Sadrnezhaad, S. K.
Nemati, Z. A.
Mahshid, S.
Hosseini, S.
Hashemi, B.
description Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T>800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T>800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.
doi_str_mv 10.1111/j.1551-2916.2006.01391.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29977794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29977794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</originalsourceid><addsrcrecordid>eNqNkNFP2zAQxq1pSOvY_odo0vaWcLaT2H6aqqgrIGilwjTeTq5jQ7qQgJ1q7X-PQxGTeMIvvrvvu59OHyEJhYzGd7LJaFHQlClaZgygzIByRbPdBzJ5FT6SCQCwVEgGn8jnEDaxpUrmE7KcOWfNkPQumbbJtBuaftfUuouTLhnubLLSgx3V5TiOajc2lfbrWDVdcnm7TKtkZZ3XZuj9_gs5croN9uvLf0x-_5pdV6fpxXJ-Vk0vUpPnlKbOCGaos2XNFZN8DaVzyjLFhLCOQmFKJmFd0pobBroWYCSvHeSFXte6zIEfkx8H7oPvH7c2DHjfBGPbVne23wZkSgkhVB6N394YN_3Wd_E2ZFQoTguQ0SQPJuP7ELx1-OCbe-33SAHHmHGDY5o4poljzPgcM-7i6vcXvg5GtzGHzjTh_74suOSliL6fB9-_prX7d_PxfFrNnutISA-EJgx290rQ_i9Gvijwz2KOubq5vikWVyj5EzwQnUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217931508</pqid></control><display><type>article</type><title>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sadrnezhaad, S. K. ; Nemati, Z. A. ; Mahshid, S. ; Hosseini, S. ; Hashemi, B.</creator><creatorcontrib>Sadrnezhaad, S. K. ; Nemati, Z. A. ; Mahshid, S. ; Hosseini, S. ; Hashemi, B.</creatorcontrib><description>Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T&gt;800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T&gt;800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2006.01391.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Aluminum ; Applied sciences ; Basic refractories ; Building materials. Ceramics. Glasses ; Carbon ; Chemical industry and chemicals ; Exact sciences and technology ; Materials science ; Oxidation ; Refractory products</subject><ispartof>Journal of the American Ceramic Society, 2007-02, Vol.90 (2), p.509-515</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Ceramic Society Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</citedby><cites>FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18538367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadrnezhaad, S. K.</creatorcontrib><creatorcontrib>Nemati, Z. A.</creatorcontrib><creatorcontrib>Mahshid, S.</creatorcontrib><creatorcontrib>Hosseini, S.</creatorcontrib><creatorcontrib>Hashemi, B.</creatorcontrib><title>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</title><title>Journal of the American Ceramic Society</title><description>Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T&gt;800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T&gt;800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.</description><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Basic refractories</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Carbon</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Oxidation</subject><subject>Refractory products</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkNFP2zAQxq1pSOvY_odo0vaWcLaT2H6aqqgrIGilwjTeTq5jQ7qQgJ1q7X-PQxGTeMIvvrvvu59OHyEJhYzGd7LJaFHQlClaZgygzIByRbPdBzJ5FT6SCQCwVEgGn8jnEDaxpUrmE7KcOWfNkPQumbbJtBuaftfUuouTLhnubLLSgx3V5TiOajc2lfbrWDVdcnm7TKtkZZ3XZuj9_gs5croN9uvLf0x-_5pdV6fpxXJ-Vk0vUpPnlKbOCGaos2XNFZN8DaVzyjLFhLCOQmFKJmFd0pobBroWYCSvHeSFXte6zIEfkx8H7oPvH7c2DHjfBGPbVne23wZkSgkhVB6N394YN_3Wd_E2ZFQoTguQ0SQPJuP7ELx1-OCbe-33SAHHmHGDY5o4poljzPgcM-7i6vcXvg5GtzGHzjTh_74suOSliL6fB9-_prX7d_PxfFrNnutISA-EJgx290rQ_i9Gvijwz2KOubq5vikWVyj5EzwQnUM</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Sadrnezhaad, S. K.</creator><creator>Nemati, Z. A.</creator><creator>Mahshid, S.</creator><creator>Hosseini, S.</creator><creator>Hashemi, B.</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>200702</creationdate><title>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</title><author>Sadrnezhaad, S. K. ; Nemati, Z. A. ; Mahshid, S. ; Hosseini, S. ; Hashemi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Basic refractories</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Carbon</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Oxidation</topic><topic>Refractory products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadrnezhaad, S. K.</creatorcontrib><creatorcontrib>Nemati, Z. A.</creatorcontrib><creatorcontrib>Mahshid, S.</creatorcontrib><creatorcontrib>Hosseini, S.</creatorcontrib><creatorcontrib>Hashemi, B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadrnezhaad, S. K.</au><au>Nemati, Z. A.</au><au>Mahshid, S.</au><au>Hosseini, S.</au><au>Hashemi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2007-02</date><risdate>2007</risdate><volume>90</volume><issue>2</issue><spage>509</spage><epage>515</epage><pages>509-515</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Kinetics of air oxidation of MgO–C–Al refractory at 600°–1300°C were investigated using the software based on the modified shrinking core model (KDA). Commercial bricks containing 88.5% MgO, 10% residual carbon, and 1.5% aluminum anti‐oxidant were oxidized isothermally with air. Combination of experimental data with model calculations indicated gas diffusion through solid material and pores as a major controlling step. Previously observed chemisorption process was eliminated from the rate‐controlling mechanism with addition of aluminum antioxidant. Comprehensive rate equations were devised for MgO–C–Al and MgO–C oxidation reactions. Overall activation energies of Qid (internal diffusion)=139.15 kJ/mol at T≤800°C and Qpd (pore diffusion)=25.48 kJ/mol at T&gt;800°C were obtained for MgO–C–Al oxidation reactions. Corresponding values were determined to be Qid=134.85 kJ/mol and Qca (chemical adsorption)=66.69 kJ/mol at T≤800°C and Qpd=18.95 kJ/mol and Qca=66.69 kJ/mol at T&gt;800°C for MgO–C oxidation reactions. Addition of aluminum anti‐oxidant indicated a reducing effect on oxidation of MgO–C bricks at 800°C≤T≤1250°C. Reverse behavior was observed at T≤700°C.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2006.01391.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2007-02, Vol.90 (2), p.509-515
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_29977794
source Wiley-Blackwell Read & Publish Collection
subjects Aluminum
Applied sciences
Basic refractories
Building materials. Ceramics. Glasses
Carbon
Chemical industry and chemicals
Exact sciences and technology
Materials science
Oxidation
Refractory products
title Effect of Al Antioxidant on the Rate of Oxidation of Carbon in MgO-C Refractory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Al%20Antioxidant%20on%20the%20Rate%20of%20Oxidation%20of%20Carbon%20in%20MgO-C%20Refractory&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Sadrnezhaad,%20S.%20K.&rft.date=2007-02&rft.volume=90&rft.issue=2&rft.spage=509&rft.epage=515&rft.pages=509-515&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2006.01391.x&rft_dat=%3Cproquest_cross%3E29977794%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4411-fc72c1fe6d39283b06ff9e29277ef105c6280b61d3c20ad70c83df045abda6403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217931508&rft_id=info:pmid/&rfr_iscdi=true