Loading…
Multi-variable optimization of PEMFC cathodes using an agglomerate model
A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate...
Saved in:
Published in: | Electrochimica acta 2007-06, Vol.52 (22), p.6318-6337 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23 |
container_end_page | 6337 |
container_issue | 22 |
container_start_page | 6318 |
container_title | Electrochimica acta |
container_volume | 52 |
creator | Secanell, M. Karan, K. Suleman, A. Djilali, N. |
description | A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1
mg
cm
−2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35
mg
cm
−2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance. |
doi_str_mv | 10.1016/j.electacta.2007.04.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29982242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468607005002</els_id><sourcerecordid>29982242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-g93orjWP2iZLGXyBogtdh5v0ZsyQNmPSEfTX23FEl8KFu7jfOYd7CDlhtGKUNefLCgPaEaapOKVtReuKcrlDZky2ohTyQu2SGaVMlHUjm31ykPOSTmDT0hm5fViH0ZfvkDyYgEVcjb73nzD6OBTRFU9XD9fzwsL4GjvMxTr7YVHAUMBiEWKPCUYs-ukUjsieg5Dx-Gcfkpfrq-f5bXn_eHM3v7wvbc3EWFqhjOw4Cmk62ghrlHKcM-5UcwGmY641DRhHqQFuULZOOWSipZwpQNFxcUjOtr6rFN_WmEfd-2wxBBgwrrPmSknO6w3YbkGbYs4JnV4l30P60IzqTXN6qX-b05vmNK311NykPP2JgGwhuASD9flPLqWo2XfC5ZbD6d93j0ln63Gw2Pk0-eou-n-zvgDlhYj_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29982242</pqid></control><display><type>article</type><title>Multi-variable optimization of PEMFC cathodes using an agglomerate model</title><source>ScienceDirect Journals</source><creator>Secanell, M. ; Karan, K. ; Suleman, A. ; Djilali, N.</creator><creatorcontrib>Secanell, M. ; Karan, K. ; Suleman, A. ; Djilali, N.</creatorcontrib><description>A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1
mg
cm
−2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35
mg
cm
−2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2007.04.028</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Catalyst layer ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Finite elements ; Fuel cell ; Fuel cells ; Gas diffusion layer ; Platinum loading ; Sensitivity analysis</subject><ispartof>Electrochimica acta, 2007-06, Vol.52 (22), p.6318-6337</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</citedby><cites>FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18834142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Secanell, M.</creatorcontrib><creatorcontrib>Karan, K.</creatorcontrib><creatorcontrib>Suleman, A.</creatorcontrib><creatorcontrib>Djilali, N.</creatorcontrib><title>Multi-variable optimization of PEMFC cathodes using an agglomerate model</title><title>Electrochimica acta</title><description>A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1
mg
cm
−2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35
mg
cm
−2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.</description><subject>Applied sciences</subject><subject>Catalyst layer</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Gas diffusion layer</subject><subject>Platinum loading</subject><subject>Sensitivity analysis</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD5-g93orjWP2iZLGXyBogtdh5v0ZsyQNmPSEfTX23FEl8KFu7jfOYd7CDlhtGKUNefLCgPaEaapOKVtReuKcrlDZky2ohTyQu2SGaVMlHUjm31ykPOSTmDT0hm5fViH0ZfvkDyYgEVcjb73nzD6OBTRFU9XD9fzwsL4GjvMxTr7YVHAUMBiEWKPCUYs-ukUjsieg5Dx-Gcfkpfrq-f5bXn_eHM3v7wvbc3EWFqhjOw4Cmk62ghrlHKcM-5UcwGmY641DRhHqQFuULZOOWSipZwpQNFxcUjOtr6rFN_WmEfd-2wxBBgwrrPmSknO6w3YbkGbYs4JnV4l30P60IzqTXN6qX-b05vmNK311NykPP2JgGwhuASD9flPLqWo2XfC5ZbD6d93j0ln63Gw2Pk0-eou-n-zvgDlhYj_</recordid><startdate>20070630</startdate><enddate>20070630</enddate><creator>Secanell, M.</creator><creator>Karan, K.</creator><creator>Suleman, A.</creator><creator>Djilali, N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070630</creationdate><title>Multi-variable optimization of PEMFC cathodes using an agglomerate model</title><author>Secanell, M. ; Karan, K. ; Suleman, A. ; Djilali, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Catalyst layer</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Gas diffusion layer</topic><topic>Platinum loading</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Secanell, M.</creatorcontrib><creatorcontrib>Karan, K.</creatorcontrib><creatorcontrib>Suleman, A.</creatorcontrib><creatorcontrib>Djilali, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Secanell, M.</au><au>Karan, K.</au><au>Suleman, A.</au><au>Djilali, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-variable optimization of PEMFC cathodes using an agglomerate model</atitle><jtitle>Electrochimica acta</jtitle><date>2007-06-30</date><risdate>2007</risdate><volume>52</volume><issue>22</issue><spage>6318</spage><epage>6337</epage><pages>6318-6337</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1
mg
cm
−2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35
mg
cm
−2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2007.04.028</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2007-06, Vol.52 (22), p.6318-6337 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_29982242 |
source | ScienceDirect Journals |
subjects | Applied sciences Catalyst layer Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Finite elements Fuel cell Fuel cells Gas diffusion layer Platinum loading Sensitivity analysis |
title | Multi-variable optimization of PEMFC cathodes using an agglomerate model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-variable%20optimization%20of%20PEMFC%20cathodes%20using%20an%20agglomerate%20model&rft.jtitle=Electrochimica%20acta&rft.au=Secanell,%20M.&rft.date=2007-06-30&rft.volume=52&rft.issue=22&rft.spage=6318&rft.epage=6337&rft.pages=6318-6337&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2007.04.028&rft_dat=%3Cproquest_cross%3E29982242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29982242&rft_id=info:pmid/&rfr_iscdi=true |