Loading…

Multi-variable optimization of PEMFC cathodes using an agglomerate model

A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2007-06, Vol.52 (22), p.6318-6337
Main Authors: Secanell, M., Karan, K., Suleman, A., Djilali, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23
cites cdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23
container_end_page 6337
container_issue 22
container_start_page 6318
container_title Electrochimica acta
container_volume 52
creator Secanell, M.
Karan, K.
Suleman, A.
Djilali, N.
description A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm −2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm −2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.
doi_str_mv 10.1016/j.electacta.2007.04.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29982242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468607005002</els_id><sourcerecordid>29982242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-g93orjWP2iZLGXyBogtdh5v0ZsyQNmPSEfTX23FEl8KFu7jfOYd7CDlhtGKUNefLCgPaEaapOKVtReuKcrlDZky2ohTyQu2SGaVMlHUjm31ykPOSTmDT0hm5fViH0ZfvkDyYgEVcjb73nzD6OBTRFU9XD9fzwsL4GjvMxTr7YVHAUMBiEWKPCUYs-ukUjsieg5Dx-Gcfkpfrq-f5bXn_eHM3v7wvbc3EWFqhjOw4Cmk62ghrlHKcM-5UcwGmY641DRhHqQFuULZOOWSipZwpQNFxcUjOtr6rFN_WmEfd-2wxBBgwrrPmSknO6w3YbkGbYs4JnV4l30P60IzqTXN6qX-b05vmNK311NykPP2JgGwhuASD9flPLqWo2XfC5ZbD6d93j0ln63Gw2Pk0-eou-n-zvgDlhYj_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29982242</pqid></control><display><type>article</type><title>Multi-variable optimization of PEMFC cathodes using an agglomerate model</title><source>ScienceDirect Journals</source><creator>Secanell, M. ; Karan, K. ; Suleman, A. ; Djilali, N.</creator><creatorcontrib>Secanell, M. ; Karan, K. ; Suleman, A. ; Djilali, N.</creatorcontrib><description>A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm −2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm −2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2007.04.028</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Catalyst layer ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Finite elements ; Fuel cell ; Fuel cells ; Gas diffusion layer ; Platinum loading ; Sensitivity analysis</subject><ispartof>Electrochimica acta, 2007-06, Vol.52 (22), p.6318-6337</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</citedby><cites>FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18834142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Secanell, M.</creatorcontrib><creatorcontrib>Karan, K.</creatorcontrib><creatorcontrib>Suleman, A.</creatorcontrib><creatorcontrib>Djilali, N.</creatorcontrib><title>Multi-variable optimization of PEMFC cathodes using an agglomerate model</title><title>Electrochimica acta</title><description>A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm −2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm −2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.</description><subject>Applied sciences</subject><subject>Catalyst layer</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Gas diffusion layer</subject><subject>Platinum loading</subject><subject>Sensitivity analysis</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOD5-g93orjWP2iZLGXyBogtdh5v0ZsyQNmPSEfTX23FEl8KFu7jfOYd7CDlhtGKUNefLCgPaEaapOKVtReuKcrlDZky2ohTyQu2SGaVMlHUjm31ykPOSTmDT0hm5fViH0ZfvkDyYgEVcjb73nzD6OBTRFU9XD9fzwsL4GjvMxTr7YVHAUMBiEWKPCUYs-ukUjsieg5Dx-Gcfkpfrq-f5bXn_eHM3v7wvbc3EWFqhjOw4Cmk62ghrlHKcM-5UcwGmY641DRhHqQFuULZOOWSipZwpQNFxcUjOtr6rFN_WmEfd-2wxBBgwrrPmSknO6w3YbkGbYs4JnV4l30P60IzqTXN6qX-b05vmNK311NykPP2JgGwhuASD9flPLqWo2XfC5ZbD6d93j0ln63Gw2Pk0-eou-n-zvgDlhYj_</recordid><startdate>20070630</startdate><enddate>20070630</enddate><creator>Secanell, M.</creator><creator>Karan, K.</creator><creator>Suleman, A.</creator><creator>Djilali, N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070630</creationdate><title>Multi-variable optimization of PEMFC cathodes using an agglomerate model</title><author>Secanell, M. ; Karan, K. ; Suleman, A. ; Djilali, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Catalyst layer</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Gas diffusion layer</topic><topic>Platinum loading</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Secanell, M.</creatorcontrib><creatorcontrib>Karan, K.</creatorcontrib><creatorcontrib>Suleman, A.</creatorcontrib><creatorcontrib>Djilali, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Secanell, M.</au><au>Karan, K.</au><au>Suleman, A.</au><au>Djilali, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-variable optimization of PEMFC cathodes using an agglomerate model</atitle><jtitle>Electrochimica acta</jtitle><date>2007-06-30</date><risdate>2007</risdate><volume>52</volume><issue>22</issue><spage>6318</spage><epage>6337</epage><pages>6318-6337</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A comprehensive numerical framework for cathode electrode design is presented and applied to predict the catalyst layer and the gas diffusion layer parameters that lead to an optimal electrode performance at different operating conditions. The design and optimization framework couples an agglomerate cathode catalyst layer model to a numerical gradient-based optimization algorithm. The set of optimal parameters is obtained by solving a multi-variable optimization problem. The parameters are the catalyst layer platinum loading, platinum to carbon ratio, amount of electrolyte in the agglomerate and the gas diffusion layer porosity. The results show that the optimal catalyst layer composition and gas diffusion layer porosity depend on operating conditions. At low current densities, performance is mainly improved by increasing platinum loading to values above 1 mg cm −2, moderate values of electrolyte volume fraction, 0.5, and low porosity, 0.1. At higher current densities, performance is improved by reducing the platinum loading to values below 0.35 mg cm −2 and increasing both electrolyte volume fraction, 0.55, and porosity 0.32. The underlying improvements due to the optimized compositions are analyzed in terms of the spatial distribution of the various overpotentials, and the effect of the agglomerate structure parameters (radius and electrolyte film) are investigated. The paper closes with a discussion of the optimized composition obtained in this study in the context of available experimental data. The analysis suggests that reducing the solid phase volume fraction inside the catalyst layer might lead to improved electrode performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2007.04.028</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2007-06, Vol.52 (22), p.6318-6337
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_29982242
source ScienceDirect Journals
subjects Applied sciences
Catalyst layer
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Finite elements
Fuel cell
Fuel cells
Gas diffusion layer
Platinum loading
Sensitivity analysis
title Multi-variable optimization of PEMFC cathodes using an agglomerate model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-variable%20optimization%20of%20PEMFC%20cathodes%20using%20an%20agglomerate%20model&rft.jtitle=Electrochimica%20acta&rft.au=Secanell,%20M.&rft.date=2007-06-30&rft.volume=52&rft.issue=22&rft.spage=6318&rft.epage=6337&rft.pages=6318-6337&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2007.04.028&rft_dat=%3Cproquest_cross%3E29982242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-c39b8d2e38bd063cb99f2212f965abd1f7b6abf00ba2be87f9fe1370219ae3d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29982242&rft_id=info:pmid/&rfr_iscdi=true