Loading…
Warm start by Hopfield neural networks for interior point methods
Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real wo...
Saved in:
Published in: | Computers & operations research 2007-09, Vol.34 (9), p.2553-2561 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33 |
container_end_page | 2561 |
container_issue | 9 |
container_start_page | 2553 |
container_title | Computers & operations research |
container_volume | 34 |
creator | Fontova, Marta I. Velazco Oliveira, Aurelio R.L. Lyra, Christiano |
description | Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real world linear programming problems. The integrated approaches provide promising results, indicating that there may be a place for neural networks in the “real game” of optimization. |
doi_str_mv | 10.1016/j.cor.2005.09.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29990608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054805003114</els_id><sourcerecordid>29990608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNukD9CbCaQ3OyPbsiR6CiFtCoFcEtKbmJVGVBuvtZW8Cfv21bILgR4yl5nDN_8MH2NfOTQc-HC5amxMTQsgGtANcP2BLbiSXS0H8fsjW0AHogbRq0_sc84rKCVbvmBXT5jWVZ4xzdVyV93GjQ80umqibcKxtPk1pudc-ZiqMM2UQhk2sYzVmuY_0eUzduJxzPTl2E_Z44-bh-vb-u7-56_rq7vadkrMtVN66XQr_AAoe7fEXrckvedCkSOF--pp6TVKaK104IceBxRcIe8kdt0p-3bI3aT4d0t5NuuQLY0jThS32bRaaxhAFfD8P3AVt2kqvxmuhepBcF4gfoBsijkn8maTwhrTznAwe6NmZYpRszdqQJtitOxcHIMxWxx9wsmG_LaohCz5Q-G-HzgqOl4CJZNtoMmSC4nsbFwM71z5B6ODi9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195840511</pqid></control><display><type>article</type><title>Warm start by Hopfield neural networks for interior point methods</title><source>ScienceDirect Freedom Collection</source><creator>Fontova, Marta I. Velazco ; Oliveira, Aurelio R.L. ; Lyra, Christiano</creator><creatorcontrib>Fontova, Marta I. Velazco ; Oliveira, Aurelio R.L. ; Lyra, Christiano</creatorcontrib><description>Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real world linear programming problems. The integrated approaches provide promising results, indicating that there may be a place for neural networks in the “real game” of optimization.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2005.09.019</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Hopfield networks ; Linear programming ; Neural networks ; Operational research. Management science ; Optimization techniques ; Primal–dual interior point methods ; Problem solving ; Studies</subject><ispartof>Computers & operations research, 2007-09, Vol.34 (9), p.2553-2561</ispartof><rights>2005 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33</citedby><cites>FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18579586$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fontova, Marta I. Velazco</creatorcontrib><creatorcontrib>Oliveira, Aurelio R.L.</creatorcontrib><creatorcontrib>Lyra, Christiano</creatorcontrib><title>Warm start by Hopfield neural networks for interior point methods</title><title>Computers & operations research</title><description>Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real world linear programming problems. The integrated approaches provide promising results, indicating that there may be a place for neural networks in the “real game” of optimization.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Hopfield networks</subject><subject>Linear programming</subject><subject>Neural networks</subject><subject>Operational research. Management science</subject><subject>Optimization techniques</subject><subject>Primal–dual interior point methods</subject><subject>Problem solving</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNukD9CbCaQ3OyPbsiR6CiFtCoFcEtKbmJVGVBuvtZW8Cfv21bILgR4yl5nDN_8MH2NfOTQc-HC5amxMTQsgGtANcP2BLbiSXS0H8fsjW0AHogbRq0_sc84rKCVbvmBXT5jWVZ4xzdVyV93GjQ80umqibcKxtPk1pudc-ZiqMM2UQhk2sYzVmuY_0eUzduJxzPTl2E_Z44-bh-vb-u7-56_rq7vadkrMtVN66XQr_AAoe7fEXrckvedCkSOF--pp6TVKaK104IceBxRcIe8kdt0p-3bI3aT4d0t5NuuQLY0jThS32bRaaxhAFfD8P3AVt2kqvxmuhepBcF4gfoBsijkn8maTwhrTznAwe6NmZYpRszdqQJtitOxcHIMxWxx9wsmG_LaohCz5Q-G-HzgqOl4CJZNtoMmSC4nsbFwM71z5B6ODi9s</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Fontova, Marta I. Velazco</creator><creator>Oliveira, Aurelio R.L.</creator><creator>Lyra, Christiano</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070901</creationdate><title>Warm start by Hopfield neural networks for interior point methods</title><author>Fontova, Marta I. Velazco ; Oliveira, Aurelio R.L. ; Lyra, Christiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Hopfield networks</topic><topic>Linear programming</topic><topic>Neural networks</topic><topic>Operational research. Management science</topic><topic>Optimization techniques</topic><topic>Primal–dual interior point methods</topic><topic>Problem solving</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fontova, Marta I. Velazco</creatorcontrib><creatorcontrib>Oliveira, Aurelio R.L.</creatorcontrib><creatorcontrib>Lyra, Christiano</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fontova, Marta I. Velazco</au><au>Oliveira, Aurelio R.L.</au><au>Lyra, Christiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warm start by Hopfield neural networks for interior point methods</atitle><jtitle>Computers & operations research</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>34</volume><issue>9</issue><spage>2553</spage><epage>2561</epage><pages>2553-2561</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real world linear programming problems. The integrated approaches provide promising results, indicating that there may be a place for neural networks in the “real game” of optimization.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2005.09.019</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2007-09, Vol.34 (9), p.2553-2561 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_29990608 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Hopfield networks Linear programming Neural networks Operational research. Management science Optimization techniques Primal–dual interior point methods Problem solving Studies |
title | Warm start by Hopfield neural networks for interior point methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warm%20start%20by%20Hopfield%20neural%20networks%20for%20interior%20point%20methods&rft.jtitle=Computers%20&%20operations%20research&rft.au=Fontova,%20Marta%20I.%20Velazco&rft.date=2007-09-01&rft.volume=34&rft.issue=9&rft.spage=2553&rft.epage=2561&rft.pages=2553-2561&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2005.09.019&rft_dat=%3Cproquest_cross%3E29990608%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-d89bd925f60a74dba492e7ff158ede8aaaaa4ebf9a702c7d0f64a6a518a137a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195840511&rft_id=info:pmid/&rfr_iscdi=true |