Loading…

Evaluating Bayesian networks’ precision for detecting students’ learning styles

Students are characterized by different learning styles, focusing on different types of information and processing this information in different ways. One of the desirable characteristics of a Web-based education system is that all the students can learn despite their different learning styles. To a...

Full description

Saved in:
Bibliographic Details
Published in:Computers and education 2007-11, Vol.49 (3), p.794-808
Main Authors: García, Patricio, Amandi, Analía, Schiaffino, Silvia, Campo, Marcelo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Students are characterized by different learning styles, focusing on different types of information and processing this information in different ways. One of the desirable characteristics of a Web-based education system is that all the students can learn despite their different learning styles. To achieve this goal we have to detect how students learn: reflecting or acting; steadily or in fits and starts; intuitively or sensitively. In this work, we evaluate Bayesian networks at detecting the learning style of a student in a Web-based education system. The Bayesian network models different aspects of a student behavior while he/she works with this system. Then, it infers his/her learning styles according to the modeled behaviors. The proposed Bayesian model was evaluated in the context of an Artificial Intelligence Web-based course. The results obtained are promising as regards the detection of students’ learning styles. Different levels of precision were found for the different dimensions or aspects of a learning style.
ISSN:0360-1315
1873-782X
DOI:10.1016/j.compedu.2005.11.017