Loading…

A review of the occurrence and microbial transformation of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-impacted environments

Aqueous film-forming foams (AFFFs) have been extensively used for extinguishing hydrocarbon-fuel fires at military sites, airports, and fire-training areas. Despite being a significant source of per- and polyfluoroalkyl substances (PFAS), our understanding of PFAS occurrence in AFFF formulations and...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2024-06, Vol.927, p.171883-171883, Article 171883
Main Authors: Yan, Peng-Fei, Dong, Sheng, Pennell, Kurt D., Cápiro, Natalie L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aqueous film-forming foams (AFFFs) have been extensively used for extinguishing hydrocarbon-fuel fires at military sites, airports, and fire-training areas. Despite being a significant source of per- and polyfluoroalkyl substances (PFAS), our understanding of PFAS occurrence in AFFF formulations and AFFF-impacted environments is limited, as is the impact of microbial transformation on the environment fate of AFFF-derived PFAS. This literature review compiles PFAS concentrations in electrochemical fluorination (ECF)- and fluorotelomer (FT)-based AFFFs and provides an overview of PFAS occurrence in AFFF-impacted environments. Our analysis reveals that AFFF use is a predominant point source of PFAS contamination, including primary precursors (polyfluoroalkyl substances as AFFF components), secondary precursors (polyfluoroalkyl transformation products of primary precursors), and perfluoroalkyl acids (PFAAs). Moreover, there are discrepancies between PFAS concentration profiles in AFFFs and those measured in AFFF-impacted media. For example, primary precursors constitute 52.6 % and 99.5 % of PFAS mass in ECF- and FT-based AFFFs, respectively, whereas they represent only 0.7 % total mass in AFFF-impacted groundwater. Conversely, secondary precursors, which constitute
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.171883