Loading…

Effect of the oxygen pressure on the photoluminescence properties of ZnO thin films by PLD

ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere; Nd-YAG laser with wavelength of 1064 nm was used as laser source. The experiments were performed at laser energy density of 31 J/cm², substrate temperature of 400 °C and various oxygen pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2007-04, Vol.42 (8), p.2678-2683
Main Authors: Fan, X. M, Lian, J. S, Jiang, Qing, Zhou, ZuoWan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere; Nd-YAG laser with wavelength of 1064 nm was used as laser source. The experiments were performed at laser energy density of 31 J/cm², substrate temperature of 400 °C and various oxygen pressures (5–65 Pa). X-ray diffraction was applied to characterize the structure of the deposited ZnO films and the optical properties of the ZnO thin films were characterized by photoluminescence with an Ar ion laser as a light source using an excitation wavelength of 325 nm. The influence of the oxygen pressure on the structural and optical properties of ZnO thin films was investigated. It was found that ZnO film with random growth grains can be obtained under the condition of oxygen pressure 5–65 Pa. It will be clearly shown that the grain size and the formation of intrinsic defects depend on the oxygen partial pressure and that high optical quality of the ZnO films is obtained under low oxygen pressure (5 Pa, 11 Pa) conditions.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-006-1367-y