Loading…

Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle

The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition indepe...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2007-07, Vol.71 (1), p.102-126
Main Author: Celigoj, C. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3
cites cdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3
container_end_page 126
container_issue 1
container_start_page 102
container_title International journal for numerical methods in engineering
container_volume 71
creator Celigoj, C. C.
description The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate. In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃. What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables. The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167). Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.1950
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30044311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30044311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</originalsourceid><addsrcrecordid>eNp1kM9uEzEQhy0EEqEg8Qi-gLhssdf7z0cUSqkU0kurSr1Ys95ZYljbwbNVGx6Bp67bBDj15JHn0zczP8beSnEshSg_Bo_HUtfiGVtIodtClKJ9zha5pYtad_Ile0X0Qwgpa6EW7M_FBpOPHu0GgrMw8U308TsG9xtmFwOHANOOHPE4crhztPMe5-QsdwEnoDlXFCc3EIeZjy64GTnNCVwg3gPhwB8lGbcJPYY5j_AZ838HbFNuue2Er9mLESbCN4f3iF1-OblYfi1W56dny0-rwqqmEoWs2g76BlqtB2tFqUbby66VsuyGTtda4DDm76HtoRElVEqVpdbClk0J_YBWHbH3e-82xV83SLPxjixOEwSMN2SUEFWlpMzghz1oUyRKOJq8q4e0M1KYh7BNDts8hJ3RdwcnUA5xTJBvov98p5uq0SpzxZ67dRPunvSZ9beTg_fAO5rx7h8P6adpWtXW5mp9aq6v1OfltVyblboHvX-geA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30044311</pqid></control><display><type>article</type><title>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Celigoj, C. C.</creator><creatorcontrib>Celigoj, C. C.</creatorcontrib><description>The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate. In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃. What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables. The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167). Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1950</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>axisymmetric solids ; Computational techniques ; Exact sciences and technology ; finite elements ; Fundamental areas of phenomenology (including applications) ; homogenization analysis at finite strains ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Structural and continuum mechanics ; thermomechanical loading ; torsion</subject><ispartof>International journal for numerical methods in engineering, 2007-07, Vol.71 (1), p.102-126</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</citedby><cites>FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18964693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Celigoj, C. C.</creatorcontrib><title>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate. In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃. What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables. The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167). Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>axisymmetric solids</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>homogenization analysis at finite strains</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>thermomechanical loading</subject><subject>torsion</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM9uEzEQhy0EEqEg8Qi-gLhssdf7z0cUSqkU0kurSr1Ys95ZYljbwbNVGx6Bp67bBDj15JHn0zczP8beSnEshSg_Bo_HUtfiGVtIodtClKJ9zha5pYtad_Ile0X0Qwgpa6EW7M_FBpOPHu0GgrMw8U308TsG9xtmFwOHANOOHPE4crhztPMe5-QsdwEnoDlXFCc3EIeZjy64GTnNCVwg3gPhwB8lGbcJPYY5j_AZ838HbFNuue2Er9mLESbCN4f3iF1-OblYfi1W56dny0-rwqqmEoWs2g76BlqtB2tFqUbby66VsuyGTtda4DDm76HtoRElVEqVpdbClk0J_YBWHbH3e-82xV83SLPxjixOEwSMN2SUEFWlpMzghz1oUyRKOJq8q4e0M1KYh7BNDts8hJ3RdwcnUA5xTJBvov98p5uq0SpzxZ67dRPunvSZ9beTg_fAO5rx7h8P6adpWtXW5mp9aq6v1OfltVyblboHvX-geA</recordid><startdate>20070702</startdate><enddate>20070702</enddate><creator>Celigoj, C. C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070702</creationdate><title>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</title><author>Celigoj, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>axisymmetric solids</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>homogenization analysis at finite strains</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>thermomechanical loading</topic><topic>torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celigoj, C. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celigoj, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2007-07-02</date><risdate>2007</risdate><volume>71</volume><issue>1</issue><spage>102</spage><epage>126</epage><pages>102-126</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate. In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃. What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables. The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167). Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1950</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2007-07, Vol.71 (1), p.102-126
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_30044311
source Wiley-Blackwell Read & Publish Collection
subjects axisymmetric solids
Computational techniques
Exact sciences and technology
finite elements
Fundamental areas of phenomenology (including applications)
homogenization analysis at finite strains
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical methods in physics
Physics
Solid mechanics
Structural and continuum mechanics
thermomechanical loading
torsion
title Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20homogenization%20analysis%20of%20axisymmetric%20inelastic%20solids%20at%20finite%20strains%20based%20on%20an%20incremental%20minimization%20principle&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Celigoj,%20C.%20C.&rft.date=2007-07-02&rft.volume=71&rft.issue=1&rft.spage=102&rft.epage=126&rft.pages=102-126&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1950&rft_dat=%3Cproquest_cross%3E30044311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30044311&rft_id=info:pmid/&rfr_iscdi=true