Loading…
Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle
The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition indepe...
Saved in:
Published in: | International journal for numerical methods in engineering 2007-07, Vol.71 (1), p.102-126 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3 |
container_end_page | 126 |
container_issue | 1 |
container_start_page | 102 |
container_title | International journal for numerical methods in engineering |
container_volume | 71 |
creator | Celigoj, C. C. |
description | The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate.
In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃.
What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables.
The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167).
Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.1950 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30044311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30044311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</originalsourceid><addsrcrecordid>eNp1kM9uEzEQhy0EEqEg8Qi-gLhssdf7z0cUSqkU0kurSr1Ys95ZYljbwbNVGx6Bp67bBDj15JHn0zczP8beSnEshSg_Bo_HUtfiGVtIodtClKJ9zha5pYtad_Ile0X0Qwgpa6EW7M_FBpOPHu0GgrMw8U308TsG9xtmFwOHANOOHPE4crhztPMe5-QsdwEnoDlXFCc3EIeZjy64GTnNCVwg3gPhwB8lGbcJPYY5j_AZ838HbFNuue2Er9mLESbCN4f3iF1-OblYfi1W56dny0-rwqqmEoWs2g76BlqtB2tFqUbby66VsuyGTtda4DDm76HtoRElVEqVpdbClk0J_YBWHbH3e-82xV83SLPxjixOEwSMN2SUEFWlpMzghz1oUyRKOJq8q4e0M1KYh7BNDts8hJ3RdwcnUA5xTJBvov98p5uq0SpzxZ67dRPunvSZ9beTg_fAO5rx7h8P6adpWtXW5mp9aq6v1OfltVyblboHvX-geA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30044311</pqid></control><display><type>article</type><title>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Celigoj, C. C.</creator><creatorcontrib>Celigoj, C. C.</creatorcontrib><description>The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate.
In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃.
What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables.
The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167).
Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1950</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>axisymmetric solids ; Computational techniques ; Exact sciences and technology ; finite elements ; Fundamental areas of phenomenology (including applications) ; homogenization analysis at finite strains ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Structural and continuum mechanics ; thermomechanical loading ; torsion</subject><ispartof>International journal for numerical methods in engineering, 2007-07, Vol.71 (1), p.102-126</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</citedby><cites>FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18964693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Celigoj, C. C.</creatorcontrib><title>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate.
In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃.
What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables.
The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167).
Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>axisymmetric solids</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>homogenization analysis at finite strains</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>thermomechanical loading</subject><subject>torsion</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM9uEzEQhy0EEqEg8Qi-gLhssdf7z0cUSqkU0kurSr1Ys95ZYljbwbNVGx6Bp67bBDj15JHn0zczP8beSnEshSg_Bo_HUtfiGVtIodtClKJ9zha5pYtad_Ile0X0Qwgpa6EW7M_FBpOPHu0GgrMw8U308TsG9xtmFwOHANOOHPE4crhztPMe5-QsdwEnoDlXFCc3EIeZjy64GTnNCVwg3gPhwB8lGbcJPYY5j_AZ838HbFNuue2Er9mLESbCN4f3iF1-OblYfi1W56dny0-rwqqmEoWs2g76BlqtB2tFqUbby66VsuyGTtda4DDm76HtoRElVEqVpdbClk0J_YBWHbH3e-82xV83SLPxjixOEwSMN2SUEFWlpMzghz1oUyRKOJq8q4e0M1KYh7BNDts8hJ3RdwcnUA5xTJBvov98p5uq0SpzxZ67dRPunvSZ9beTg_fAO5rx7h8P6adpWtXW5mp9aq6v1OfltVyblboHvX-geA</recordid><startdate>20070702</startdate><enddate>20070702</enddate><creator>Celigoj, C. C.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070702</creationdate><title>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</title><author>Celigoj, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>axisymmetric solids</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>homogenization analysis at finite strains</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>thermomechanical loading</topic><topic>torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celigoj, C. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celigoj, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2007-07-02</date><risdate>2007</risdate><volume>71</volume><issue>1</issue><spage>102</spage><epage>126</epage><pages>102-126</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The paper presents an attempt to extend homogenization analysis to axisymmetric solids under thermo‐ mechanical loading. In axisymmetric solids, under axisymmetric thermomechanical loading and/or torsion, on both scales, macro and micro, the displacement and rotation response is by definition independent of the cylindrical angle co‐ordinate.
In homogenization analysis the deformation of the micro‐structure is driven by the deformation gradient F̄ of the macro‐structure and enhanced by a micro‐scale fluctuation field ũ, such that: x=F̄·X+ũ and in consequence F=F̄+F̃.
What is new: on the micro‐scale, the fact of independence of the cylindrical angle co‐ordinate imposes the homogeneous or Taylor‐assumption on the fluctuation field ũ of the R(epresentative) V(olume) E(lement) in the radial direction, whereas the other two fluctuation fields, the torsional angle and the axial displacement , are not affected. The thermomechanical problem on the macroscale is solved via a split approach: an isentropic mechanical phase, an isogeometrical thermal phase, and—in case of inelasticity—an update phase of the internal micro‐variables.
The homogenization of inelastic solid materials at finite strains is based on an incremental minimization principle, recently introduced by Miehe et al. (J. Mech. Phys. Solids 2002; 50:2123–2167).
Two finite element examples demonstrate the viability of the proposed approach. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1950</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2007-07, Vol.71 (1), p.102-126 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_30044311 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | axisymmetric solids Computational techniques Exact sciences and technology finite elements Fundamental areas of phenomenology (including applications) homogenization analysis at finite strains Inelasticity (thermoplasticity, viscoplasticity...) Mathematical methods in physics Physics Solid mechanics Structural and continuum mechanics thermomechanical loading torsion |
title | Thermomechanical homogenization analysis of axisymmetric inelastic solids at finite strains based on an incremental minimization principle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20homogenization%20analysis%20of%20axisymmetric%20inelastic%20solids%20at%20finite%20strains%20based%20on%20an%20incremental%20minimization%20principle&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Celigoj,%20C.%20C.&rft.date=2007-07-02&rft.volume=71&rft.issue=1&rft.spage=102&rft.epage=126&rft.pages=102-126&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1950&rft_dat=%3Cproquest_cross%3E30044311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3640-1478ab6a799dcc023fcb1871128d89590edfc02d7ba602a43322990c262abdec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30044311&rft_id=info:pmid/&rfr_iscdi=true |