Loading…
Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor
ZnO nanowire was tailored both physically and chemically to immobilize the enzyme glucose oxidase (GOD) for construction of a glucose sensor with high performance, which was ascribed to its high specific surface area and high isoelectric point value for efficient immobilization of high concentration...
Saved in:
Published in: | Electroanalysis (New York, N.Y.) N.Y.), 2007-05, Vol.19 (9), p.1008-1014 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO nanowire was tailored both physically and chemically to immobilize the enzyme glucose oxidase (GOD) for construction of a glucose sensor with high performance, which was ascribed to its high specific surface area and high isoelectric point value for efficient immobilization of high concentration of acidic enzymes and the mediating effect by the redox reaction of ZnO nanowires. The apparent Michaelis constants Jmax, and KM were adjusted in a large scope by tailoring the thickness of the GOD/ZnO nanowire layer and the enzyme load in the nanowired network. Thus, a variety of linear region, sensitivities and reaction rates of the sensor could be easily achieved. Moreover, the glucose sensor showed long term stability with the incorporation of the inorganic zinc oxide nanowire. |
---|---|
ISSN: | 1040-0397 1521-4109 |
DOI: | 10.1002/elan.200603808 |