Loading…
Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon
The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270 K, hydrogen evolves into...
Saved in:
Published in: | Surface science 2007-09, Vol.601 (17), p.3651-3660 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3 |
container_end_page | 3660 |
container_issue | 17 |
container_start_page | 3651 |
container_title | Surface science |
container_volume | 601 |
creator | Bowker, Michael Holroyd, Richard Perkins, Neil Bhantoo, Jenita Counsell, Jonathan Carley, Albert Morgan, Chris |
description | The reaction of acetaldehyde with the Pd(1
1
0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270
K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270
K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300
K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400
K. However, when acetaldehyde is dosed at 423
K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473
K and above, the reaction mechanism changes to total dehydrogenation, and CO and H
2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2
×
2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal. |
doi_str_mv | 10.1016/j.susc.2007.07.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30076479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602807007789</els_id><sourcerecordid>30076479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9KHpoTdKPtOBFxC8Q9KBXQzqZYpZus2a6wv57U3fBm8MLc5jnnWFexk4FzwQX1dUiozVBJjlX2SRe7rGZqFWTSlXW-2zGed6kFZf1ITsiWvBYRVPO2McN4Gh6i58bi4mx5MNqdH5IzGATMHG0GR0kFsEvV57c7yzq1V6IRCT88hccPzGxjsj36y3QRW9o_XDMDjrTE57s-py939-93T6mzy8PT7c3zynklRjTupUWy64qcqGEkK2xgC3aVpUWQOUKSmiEQlmiLYRUvKp51dR1DlVXi7yFfM7Ot3tXwX-tkUa9dATY92ZAvyadx2CqQjURlFsQgicK2OlVcEsTNlpwPUWpF3qKUk9R6km8jKaz3XZDYPoumAEc_TkbLrkqZOSutxzGV78dBk3gcAC0LiCM2nr335kfFK-KAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30076479</pqid></control><display><type>article</type><title>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</title><source>ScienceDirect Journals</source><creator>Bowker, Michael ; Holroyd, Richard ; Perkins, Neil ; Bhantoo, Jenita ; Counsell, Jonathan ; Carley, Albert ; Morgan, Chris</creator><creatorcontrib>Bowker, Michael ; Holroyd, Richard ; Perkins, Neil ; Bhantoo, Jenita ; Counsell, Jonathan ; Carley, Albert ; Morgan, Chris</creatorcontrib><description>The reaction of acetaldehyde with the Pd(1
1
0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270
K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270
K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300
K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400
K. However, when acetaldehyde is dosed at 423
K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473
K and above, the reaction mechanism changes to total dehydrogenation, and CO and H
2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2
×
2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2007.07.005</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acetaldehyde adsorption ; Carbidation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Decarbonylation ; Exact sciences and technology ; Molecular beam ; Physics ; Sticking</subject><ispartof>Surface science, 2007-09, Vol.601 (17), p.3651-3660</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</citedby><cites>FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19020742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowker, Michael</creatorcontrib><creatorcontrib>Holroyd, Richard</creatorcontrib><creatorcontrib>Perkins, Neil</creatorcontrib><creatorcontrib>Bhantoo, Jenita</creatorcontrib><creatorcontrib>Counsell, Jonathan</creatorcontrib><creatorcontrib>Carley, Albert</creatorcontrib><creatorcontrib>Morgan, Chris</creatorcontrib><title>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</title><title>Surface science</title><description>The reaction of acetaldehyde with the Pd(1
1
0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270
K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270
K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300
K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400
K. However, when acetaldehyde is dosed at 423
K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473
K and above, the reaction mechanism changes to total dehydrogenation, and CO and H
2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2
×
2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.</description><subject>Acetaldehyde adsorption</subject><subject>Carbidation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Decarbonylation</subject><subject>Exact sciences and technology</subject><subject>Molecular beam</subject><subject>Physics</subject><subject>Sticking</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9KHpoTdKPtOBFxC8Q9KBXQzqZYpZus2a6wv57U3fBm8MLc5jnnWFexk4FzwQX1dUiozVBJjlX2SRe7rGZqFWTSlXW-2zGed6kFZf1ITsiWvBYRVPO2McN4Gh6i58bi4mx5MNqdH5IzGATMHG0GR0kFsEvV57c7yzq1V6IRCT88hccPzGxjsj36y3QRW9o_XDMDjrTE57s-py939-93T6mzy8PT7c3zynklRjTupUWy64qcqGEkK2xgC3aVpUWQOUKSmiEQlmiLYRUvKp51dR1DlVXi7yFfM7Ot3tXwX-tkUa9dATY92ZAvyadx2CqQjURlFsQgicK2OlVcEsTNlpwPUWpF3qKUk9R6km8jKaz3XZDYPoumAEc_TkbLrkqZOSutxzGV78dBk3gcAC0LiCM2nr335kfFK-KAA</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Bowker, Michael</creator><creator>Holroyd, Richard</creator><creator>Perkins, Neil</creator><creator>Bhantoo, Jenita</creator><creator>Counsell, Jonathan</creator><creator>Carley, Albert</creator><creator>Morgan, Chris</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070901</creationdate><title>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</title><author>Bowker, Michael ; Holroyd, Richard ; Perkins, Neil ; Bhantoo, Jenita ; Counsell, Jonathan ; Carley, Albert ; Morgan, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetaldehyde adsorption</topic><topic>Carbidation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Decarbonylation</topic><topic>Exact sciences and technology</topic><topic>Molecular beam</topic><topic>Physics</topic><topic>Sticking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowker, Michael</creatorcontrib><creatorcontrib>Holroyd, Richard</creatorcontrib><creatorcontrib>Perkins, Neil</creatorcontrib><creatorcontrib>Bhantoo, Jenita</creatorcontrib><creatorcontrib>Counsell, Jonathan</creatorcontrib><creatorcontrib>Carley, Albert</creatorcontrib><creatorcontrib>Morgan, Chris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowker, Michael</au><au>Holroyd, Richard</au><au>Perkins, Neil</au><au>Bhantoo, Jenita</au><au>Counsell, Jonathan</au><au>Carley, Albert</au><au>Morgan, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</atitle><jtitle>Surface science</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>601</volume><issue>17</issue><spage>3651</spage><epage>3660</epage><pages>3651-3660</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The reaction of acetaldehyde with the Pd(1
1
0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270
K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270
K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300
K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400
K. However, when acetaldehyde is dosed at 423
K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473
K and above, the reaction mechanism changes to total dehydrogenation, and CO and H
2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2
×
2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2007.07.005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2007-09, Vol.601 (17), p.3651-3660 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_30076479 |
source | ScienceDirect Journals |
subjects | Acetaldehyde adsorption Carbidation Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Decarbonylation Exact sciences and technology Molecular beam Physics Sticking |
title | Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetaldehyde%20adsorption%20and%20catalytic%20decomposition%20on%20Pd(1%201%200)%20and%20the%20dissolution%20of%20carbon&rft.jtitle=Surface%20science&rft.au=Bowker,%20Michael&rft.date=2007-09-01&rft.volume=601&rft.issue=17&rft.spage=3651&rft.epage=3660&rft.pages=3651-3660&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2007.07.005&rft_dat=%3Cproquest_cross%3E30076479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30076479&rft_id=info:pmid/&rfr_iscdi=true |