Loading…

Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon

The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270 K, hydrogen evolves into...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 2007-09, Vol.601 (17), p.3651-3660
Main Authors: Bowker, Michael, Holroyd, Richard, Perkins, Neil, Bhantoo, Jenita, Counsell, Jonathan, Carley, Albert, Morgan, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3
cites cdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3
container_end_page 3660
container_issue 17
container_start_page 3651
container_title Surface science
container_volume 601
creator Bowker, Michael
Holroyd, Richard
Perkins, Neil
Bhantoo, Jenita
Counsell, Jonathan
Carley, Albert
Morgan, Chris
description The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270 K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300 K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400 K. However, when acetaldehyde is dosed at 423 K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473 K and above, the reaction mechanism changes to total dehydrogenation, and CO and H 2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2 × 2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.
doi_str_mv 10.1016/j.susc.2007.07.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30076479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602807007789</els_id><sourcerecordid>30076479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9KHpoTdKPtOBFxC8Q9KBXQzqZYpZus2a6wv57U3fBm8MLc5jnnWFexk4FzwQX1dUiozVBJjlX2SRe7rGZqFWTSlXW-2zGed6kFZf1ITsiWvBYRVPO2McN4Gh6i58bi4mx5MNqdH5IzGATMHG0GR0kFsEvV57c7yzq1V6IRCT88hccPzGxjsj36y3QRW9o_XDMDjrTE57s-py939-93T6mzy8PT7c3zynklRjTupUWy64qcqGEkK2xgC3aVpUWQOUKSmiEQlmiLYRUvKp51dR1DlVXi7yFfM7Ot3tXwX-tkUa9dATY92ZAvyadx2CqQjURlFsQgicK2OlVcEsTNlpwPUWpF3qKUk9R6km8jKaz3XZDYPoumAEc_TkbLrkqZOSutxzGV78dBk3gcAC0LiCM2nr335kfFK-KAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30076479</pqid></control><display><type>article</type><title>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</title><source>ScienceDirect Journals</source><creator>Bowker, Michael ; Holroyd, Richard ; Perkins, Neil ; Bhantoo, Jenita ; Counsell, Jonathan ; Carley, Albert ; Morgan, Chris</creator><creatorcontrib>Bowker, Michael ; Holroyd, Richard ; Perkins, Neil ; Bhantoo, Jenita ; Counsell, Jonathan ; Carley, Albert ; Morgan, Chris</creatorcontrib><description>The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at &gt;270 K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300 K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400 K. However, when acetaldehyde is dosed at 423 K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473 K and above, the reaction mechanism changes to total dehydrogenation, and CO and H 2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2 × 2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2007.07.005</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acetaldehyde adsorption ; Carbidation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Decarbonylation ; Exact sciences and technology ; Molecular beam ; Physics ; Sticking</subject><ispartof>Surface science, 2007-09, Vol.601 (17), p.3651-3660</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</citedby><cites>FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19020742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowker, Michael</creatorcontrib><creatorcontrib>Holroyd, Richard</creatorcontrib><creatorcontrib>Perkins, Neil</creatorcontrib><creatorcontrib>Bhantoo, Jenita</creatorcontrib><creatorcontrib>Counsell, Jonathan</creatorcontrib><creatorcontrib>Carley, Albert</creatorcontrib><creatorcontrib>Morgan, Chris</creatorcontrib><title>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</title><title>Surface science</title><description>The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at &gt;270 K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300 K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400 K. However, when acetaldehyde is dosed at 423 K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473 K and above, the reaction mechanism changes to total dehydrogenation, and CO and H 2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2 × 2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.</description><subject>Acetaldehyde adsorption</subject><subject>Carbidation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Decarbonylation</subject><subject>Exact sciences and technology</subject><subject>Molecular beam</subject><subject>Physics</subject><subject>Sticking</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9KHpoTdKPtOBFxC8Q9KBXQzqZYpZus2a6wv57U3fBm8MLc5jnnWFexk4FzwQX1dUiozVBJjlX2SRe7rGZqFWTSlXW-2zGed6kFZf1ITsiWvBYRVPO2McN4Gh6i58bi4mx5MNqdH5IzGATMHG0GR0kFsEvV57c7yzq1V6IRCT88hccPzGxjsj36y3QRW9o_XDMDjrTE57s-py939-93T6mzy8PT7c3zynklRjTupUWy64qcqGEkK2xgC3aVpUWQOUKSmiEQlmiLYRUvKp51dR1DlVXi7yFfM7Ot3tXwX-tkUa9dATY92ZAvyadx2CqQjURlFsQgicK2OlVcEsTNlpwPUWpF3qKUk9R6km8jKaz3XZDYPoumAEc_TkbLrkqZOSutxzGV78dBk3gcAC0LiCM2nr335kfFK-KAA</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Bowker, Michael</creator><creator>Holroyd, Richard</creator><creator>Perkins, Neil</creator><creator>Bhantoo, Jenita</creator><creator>Counsell, Jonathan</creator><creator>Carley, Albert</creator><creator>Morgan, Chris</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070901</creationdate><title>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</title><author>Bowker, Michael ; Holroyd, Richard ; Perkins, Neil ; Bhantoo, Jenita ; Counsell, Jonathan ; Carley, Albert ; Morgan, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetaldehyde adsorption</topic><topic>Carbidation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Decarbonylation</topic><topic>Exact sciences and technology</topic><topic>Molecular beam</topic><topic>Physics</topic><topic>Sticking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowker, Michael</creatorcontrib><creatorcontrib>Holroyd, Richard</creatorcontrib><creatorcontrib>Perkins, Neil</creatorcontrib><creatorcontrib>Bhantoo, Jenita</creatorcontrib><creatorcontrib>Counsell, Jonathan</creatorcontrib><creatorcontrib>Carley, Albert</creatorcontrib><creatorcontrib>Morgan, Chris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowker, Michael</au><au>Holroyd, Richard</au><au>Perkins, Neil</au><au>Bhantoo, Jenita</au><au>Counsell, Jonathan</au><au>Carley, Albert</au><au>Morgan, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon</atitle><jtitle>Surface science</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>601</volume><issue>17</issue><spage>3651</spage><epage>3660</epage><pages>3651-3660</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at &gt;270 K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300 K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400 K. However, when acetaldehyde is dosed at 423 K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473 K and above, the reaction mechanism changes to total dehydrogenation, and CO and H 2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2 × 2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2007.07.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2007-09, Vol.601 (17), p.3651-3660
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_30076479
source ScienceDirect Journals
subjects Acetaldehyde adsorption
Carbidation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Decarbonylation
Exact sciences and technology
Molecular beam
Physics
Sticking
title Acetaldehyde adsorption and catalytic decomposition on Pd(1 1 0) and the dissolution of carbon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetaldehyde%20adsorption%20and%20catalytic%20decomposition%20on%20Pd(1%201%200)%20and%20the%20dissolution%20of%20carbon&rft.jtitle=Surface%20science&rft.au=Bowker,%20Michael&rft.date=2007-09-01&rft.volume=601&rft.issue=17&rft.spage=3651&rft.epage=3660&rft.pages=3651-3660&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2007.07.005&rft_dat=%3Cproquest_cross%3E30076479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-8b2de5f64317112badcebedb75dcc737c5c917e25ed4127068069883c6f813bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30076479&rft_id=info:pmid/&rfr_iscdi=true