Loading…

An immersed boundary method for compressible flows using local grid refinement

This paper combines a state-of-the-art method for solving the three-dimensional preconditioned Navier–Stokes equations for compressible flows with an immersed boundary approach, to provide a Cartesian-grid method for computing complex flows over a wide range of the Mach number. Moreover, a flexible...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2007-08, Vol.225 (2), p.2098-2117
Main Authors: de Tullio, M.D., De Palma, P., Iaccarino, G., Pascazio, G., Napolitano, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper combines a state-of-the-art method for solving the three-dimensional preconditioned Navier–Stokes equations for compressible flows with an immersed boundary approach, to provide a Cartesian-grid method for computing complex flows over a wide range of the Mach number. Moreover, a flexible local grid refinement technique is employed to achieve high resolution near the immersed body and in other high-flow-gradient regions at a fraction of the cost required by a uniformly fine grid. The method is validated versus well documented steady and unsteady test problems, for a wide range of both Reynolds and Mach numbers. Finally, and most importantly, for the case of the laminar compressible steady flow past an NACA-0012 airfoil, a thorough mesh-refinement study shows that the method is second-order accurate.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2007.03.008