Loading…
Boundary element simulation of DC stray currents in oil industry due to cathodic protection interference
This paper presents a 3D theoretical simulation and analysis of DC stray current corrosion (SCC) in oil fields that could contribute to oil leak and finally oil deferment of electric submersible pump (ESP) systems. Application of the boundary element analysis system (BEASY) allowed cathodic protecti...
Saved in:
Published in: | European transactions on electrical power 2007-09, Vol.17 (5), p.486-499 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a 3D theoretical simulation and analysis of DC stray current corrosion (SCC) in oil fields that could contribute to oil leak and finally oil deferment of electric submersible pump (ESP) systems. Application of the boundary element analysis system (BEASY) allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate, rather than using the qualitative approach of measuring the potential shift of the soil. Different real structures consisting of pipelines and/or well casings with different arrangements and interference conditions are simulated. The results reveal that the application of impressed current cathodic protection (ICCP) systems creates DC SCC on other nearby unprotected structures. This is an inherent potential problem with the application of such systems which dominates with decreasing soil conductivity, and/or increasing the anode current density and its proximity to the protected structures. On the contrary, SCC can be reduced by using multi‐groundbed anodes. Copyright © 2006 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1430-144X 1546-3109 |
DOI: | 10.1002/etep.140 |