Loading…
Simulation of nanotube separation in field-flow fractionation (FFF)
A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag a...
Saved in:
Published in: | Chemical engineering science 2007-09, Vol.62 (17), p.4620-4635 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3 |
container_end_page | 4635 |
container_issue | 17 |
container_start_page | 4620 |
container_title | Chemical engineering science |
container_volume | 62 |
creator | Phelan Jr, Frederick R. Bauer, Barry J. |
description | A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1
nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2. |
doi_str_mv | 10.1016/j.ces.2007.04.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30111209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907003387</els_id><sourcerecordid>30111209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvPWi6KF10q8keJLFqrDgQT2HNJ1Alm6zJq3ivzdLF7x5GmbeezPzHiGXFDIKtL7bZBpDlgOwDMoMqDgiC8pZkZYlVMdkAQAizSsQp-QshE1sGaOwIKs3u516NVo3JM4kgxrcOLWYBNwpP4_tkBiLfZea3n0nxiu9H8_YTdM0t-fkxKg-4MWhLslH8_i-ek7Xr08vq4d1qgtRjakwUHeIrONtxyveAvIIKNTxNVZVQIsW0aACBrVgbU2LkutO8LasDBVoiiW5nvfuvPucMIxya4PGvlcDuinIAiilOYhIpDNRexeCRyN33m6V_5EU5D4uuZExLrmPS0IpY1xRc3VYroJWfbQ5aBv-hFxwmpc08u5nHkanXxa9DNrioLGzHvUoO2f_ufILwiB_UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30111209</pqid></control><display><type>article</type><title>Simulation of nanotube separation in field-flow fractionation (FFF)</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Phelan Jr, Frederick R. ; Bauer, Barry J.</creator><creatorcontrib>Phelan Jr, Frederick R. ; Bauer, Barry J.</creatorcontrib><description>A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1
nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2007.04.019</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Brownian dynamics ; Chemical engineering ; Exact sciences and technology ; Flow-field fractionation ; Jeffrey equation ; Nanotubes ; Separations ; SWNT</subject><ispartof>Chemical engineering science, 2007-09, Vol.62 (17), p.4620-4635</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</citedby><cites>FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18981241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Phelan Jr, Frederick R.</creatorcontrib><creatorcontrib>Bauer, Barry J.</creatorcontrib><title>Simulation of nanotube separation in field-flow fractionation (FFF)</title><title>Chemical engineering science</title><description>A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1
nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.</description><subject>Applied sciences</subject><subject>Brownian dynamics</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Flow-field fractionation</subject><subject>Jeffrey equation</subject><subject>Nanotubes</subject><subject>Separations</subject><subject>SWNT</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvPWi6KF10q8keJLFqrDgQT2HNJ1Alm6zJq3ivzdLF7x5GmbeezPzHiGXFDIKtL7bZBpDlgOwDMoMqDgiC8pZkZYlVMdkAQAizSsQp-QshE1sGaOwIKs3u516NVo3JM4kgxrcOLWYBNwpP4_tkBiLfZea3n0nxiu9H8_YTdM0t-fkxKg-4MWhLslH8_i-ek7Xr08vq4d1qgtRjakwUHeIrONtxyveAvIIKNTxNVZVQIsW0aACBrVgbU2LkutO8LasDBVoiiW5nvfuvPucMIxya4PGvlcDuinIAiilOYhIpDNRexeCRyN33m6V_5EU5D4uuZExLrmPS0IpY1xRc3VYroJWfbQ5aBv-hFxwmpc08u5nHkanXxa9DNrioLGzHvUoO2f_ufILwiB_UA</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Phelan Jr, Frederick R.</creator><creator>Bauer, Barry J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20070901</creationdate><title>Simulation of nanotube separation in field-flow fractionation (FFF)</title><author>Phelan Jr, Frederick R. ; Bauer, Barry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Brownian dynamics</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Flow-field fractionation</topic><topic>Jeffrey equation</topic><topic>Nanotubes</topic><topic>Separations</topic><topic>SWNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phelan Jr, Frederick R.</creatorcontrib><creatorcontrib>Bauer, Barry J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phelan Jr, Frederick R.</au><au>Bauer, Barry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of nanotube separation in field-flow fractionation (FFF)</atitle><jtitle>Chemical engineering science</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>62</volume><issue>17</issue><spage>4620</spage><epage>4635</epage><pages>4620-4635</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1
nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2007.04.019</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2007-09, Vol.62 (17), p.4620-4635 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_30111209 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Brownian dynamics Chemical engineering Exact sciences and technology Flow-field fractionation Jeffrey equation Nanotubes Separations SWNT |
title | Simulation of nanotube separation in field-flow fractionation (FFF) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20nanotube%20separation%20in%20field-flow%20fractionation%20(FFF)&rft.jtitle=Chemical%20engineering%20science&rft.au=Phelan%20Jr,%20Frederick%20R.&rft.date=2007-09-01&rft.volume=62&rft.issue=17&rft.spage=4620&rft.epage=4635&rft.pages=4620-4635&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2007.04.019&rft_dat=%3Cproquest_cross%3E30111209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30111209&rft_id=info:pmid/&rfr_iscdi=true |