Loading…

Simulation of nanotube separation in field-flow fractionation (FFF)

A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag a...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2007-09, Vol.62 (17), p.4620-4635
Main Authors: Phelan Jr, Frederick R., Bauer, Barry J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3
cites cdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3
container_end_page 4635
container_issue 17
container_start_page 4620
container_title Chemical engineering science
container_volume 62
creator Phelan Jr, Frederick R.
Bauer, Barry J.
description A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1 nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.
doi_str_mv 10.1016/j.ces.2007.04.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30111209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907003387</els_id><sourcerecordid>30111209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvPWi6KF10q8keJLFqrDgQT2HNJ1Alm6zJq3ivzdLF7x5GmbeezPzHiGXFDIKtL7bZBpDlgOwDMoMqDgiC8pZkZYlVMdkAQAizSsQp-QshE1sGaOwIKs3u516NVo3JM4kgxrcOLWYBNwpP4_tkBiLfZea3n0nxiu9H8_YTdM0t-fkxKg-4MWhLslH8_i-ek7Xr08vq4d1qgtRjakwUHeIrONtxyveAvIIKNTxNVZVQIsW0aACBrVgbU2LkutO8LasDBVoiiW5nvfuvPucMIxya4PGvlcDuinIAiilOYhIpDNRexeCRyN33m6V_5EU5D4uuZExLrmPS0IpY1xRc3VYroJWfbQ5aBv-hFxwmpc08u5nHkanXxa9DNrioLGzHvUoO2f_ufILwiB_UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30111209</pqid></control><display><type>article</type><title>Simulation of nanotube separation in field-flow fractionation (FFF)</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Phelan Jr, Frederick R. ; Bauer, Barry J.</creator><creatorcontrib>Phelan Jr, Frederick R. ; Bauer, Barry J.</creatorcontrib><description>A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1 nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2007.04.019</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Brownian dynamics ; Chemical engineering ; Exact sciences and technology ; Flow-field fractionation ; Jeffrey equation ; Nanotubes ; Separations ; SWNT</subject><ispartof>Chemical engineering science, 2007-09, Vol.62 (17), p.4620-4635</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</citedby><cites>FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18981241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Phelan Jr, Frederick R.</creatorcontrib><creatorcontrib>Bauer, Barry J.</creatorcontrib><title>Simulation of nanotube separation in field-flow fractionation (FFF)</title><title>Chemical engineering science</title><description>A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1 nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.</description><subject>Applied sciences</subject><subject>Brownian dynamics</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Flow-field fractionation</subject><subject>Jeffrey equation</subject><subject>Nanotubes</subject><subject>Separations</subject><subject>SWNT</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvPWi6KF10q8keJLFqrDgQT2HNJ1Alm6zJq3ivzdLF7x5GmbeezPzHiGXFDIKtL7bZBpDlgOwDMoMqDgiC8pZkZYlVMdkAQAizSsQp-QshE1sGaOwIKs3u516NVo3JM4kgxrcOLWYBNwpP4_tkBiLfZea3n0nxiu9H8_YTdM0t-fkxKg-4MWhLslH8_i-ek7Xr08vq4d1qgtRjakwUHeIrONtxyveAvIIKNTxNVZVQIsW0aACBrVgbU2LkutO8LasDBVoiiW5nvfuvPucMIxya4PGvlcDuinIAiilOYhIpDNRexeCRyN33m6V_5EU5D4uuZExLrmPS0IpY1xRc3VYroJWfbQ5aBv-hFxwmpc08u5nHkanXxa9DNrioLGzHvUoO2f_ufILwiB_UA</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Phelan Jr, Frederick R.</creator><creator>Bauer, Barry J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20070901</creationdate><title>Simulation of nanotube separation in field-flow fractionation (FFF)</title><author>Phelan Jr, Frederick R. ; Bauer, Barry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Brownian dynamics</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Flow-field fractionation</topic><topic>Jeffrey equation</topic><topic>Nanotubes</topic><topic>Separations</topic><topic>SWNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phelan Jr, Frederick R.</creatorcontrib><creatorcontrib>Bauer, Barry J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phelan Jr, Frederick R.</au><au>Bauer, Barry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of nanotube separation in field-flow fractionation (FFF)</atitle><jtitle>Chemical engineering science</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>62</volume><issue>17</issue><spage>4620</spage><epage>4635</epage><pages>4620-4635</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>A Brownian dynamics simulation based on a prolate spheroid particle model has been developed to model the separation of nanotubes in cross flow driven, field-flow fractionation (FFF). The particle motions are governed by stochastic forms of a linear momentum balance with orientation dependent drag and diffusion coefficients, and the Jeffrey equation with rotational diffusion. The simulation shows that nanotube scale particles would be expected to elute by a normal mode mechanism up to aspect ratios of about 1000, based on a particle diameter of 1 nm. Separation of nanotubes of different length is governed by the value of the retention variable for each component in agreement with theory. Elution profiles and average velocity through the device as a function of particle size, and the flow rates in the throughput and cross-flow directions are examined. The simulation shows that clean separations between components of different size is achieved when the ratio of the retention values is greater than 2.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2007.04.019</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2007-09, Vol.62 (17), p.4620-4635
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_30111209
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Brownian dynamics
Chemical engineering
Exact sciences and technology
Flow-field fractionation
Jeffrey equation
Nanotubes
Separations
SWNT
title Simulation of nanotube separation in field-flow fractionation (FFF)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20nanotube%20separation%20in%20field-flow%20fractionation%20(FFF)&rft.jtitle=Chemical%20engineering%20science&rft.au=Phelan%20Jr,%20Frederick%20R.&rft.date=2007-09-01&rft.volume=62&rft.issue=17&rft.spage=4620&rft.epage=4635&rft.pages=4620-4635&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2007.04.019&rft_dat=%3Cproquest_cross%3E30111209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-9f06dee7d8bd858b0e8c39aec009755013beefea070697b61348cd98b45f19ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30111209&rft_id=info:pmid/&rfr_iscdi=true