Loading…
Mathematical modeling of the molecular weight distribution of polypropylene produced in a loop reactor
The model of the molecular weight distribution (MWD) of polypropylene produced in a loop reactor is established. The simulated MWD data of the polymers produced in steady‐state polymerizations agree with the actual data collected from certain plant. The simulated weight‐average molecular weight data...
Saved in:
Published in: | Polymer engineering and science 2007-10, Vol.47 (10), p.1643-1649 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3 |
container_end_page | 1649 |
container_issue | 10 |
container_start_page | 1643 |
container_title | Polymer engineering and science |
container_volume | 47 |
creator | Luo, Zheng-Hong Zheng, Yi Cao, Zhi-Kai Wen, Shao-Hua |
description | The model of the molecular weight distribution (MWD) of polypropylene produced in a loop reactor is established. The simulated MWD data of the polymers produced in steady‐state polymerizations agree with the actual data collected from certain plant. The simulated weight‐average molecular weight data also agree with the plant data in start‐up processes. Furthermore, the model can be used to simulate the influence of the operation parameters on the MWD of the polymers produced in the steady‐state polymerizations as well as the dynamic polymerizations. The simulated results of the steady state polymerizations show the MWD width of polypropylene decreases with the increase of both the propylene flow and the hydrogen flow, but increases with the increase of the catalyst flow. We also find the weight fraction of the polymers with short chains increases with the increase of both the propylene flow and the hydrogen flow, meanwhile, a small shift of the MWD curve to long chains can also be found as the catalyst flow increases. In the dynamic polymerizations, simulations indicate the MWD width and the weight fraction of the polymers with long chains all decrease in both of the start‐up process and the end‐up process of the polymerizations. POLYM. ENG. SCI., 47:1643–1649, 2007. © 2007 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.20848 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_30115567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A169766006</galeid><sourcerecordid>A169766006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3</originalsourceid><addsrcrecordid>eNp1kk1vEzEQhlcIJELhwD9YIYHEYVN_ZHe9x6oqpVIaKj7UozXxjlMXZ721d9Xm3zNpUhAoyAfbo2dez8zrLHvL2ZQzJo577KaCqZl6lk14OVOFqOTseTZhTIpCKqVeZq9SumXEyrKZZPYShhtcw-AM-HwdWvSuW-XB5hSmu0czeoj5PbrVzZC3Lg3RLcfBhW4L9cFv-hj6jccOczq1o8E2d10OuQ-hzyOCGUJ8nb2w4BO-2e9H2Y9PZ99PPxfzL-cXpyfzwpS1UEU1A2mV4kLIVtXcoOQWQdXKCjHjjDdMKAsg64qjaloBS1FasTRiScEGQR5lH3a6VMrdiGnQa5cMeg8dhjFpyTgvy6om8N0_4G0YY0e1acFVRY-VJUHFDlqBR-06G4YIZkWtRvChQ-sofMKrpq4qxiripwd4Wi2unTmY8PGvBGIGfBhWMKakL759PciaGFKKaHUf3RriRnOmt95r8l4_ek_s-313kMhXG6EzLv1JaLioldpqHu-4eyps839BfXW2eFLej4Q-Aj78zoD4U9NU61JfL851c3l1Pa_mTC_kLzUpy2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218641055</pqid></control><display><type>article</type><title>Mathematical modeling of the molecular weight distribution of polypropylene produced in a loop reactor</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Luo, Zheng-Hong ; Zheng, Yi ; Cao, Zhi-Kai ; Wen, Shao-Hua</creator><creatorcontrib>Luo, Zheng-Hong ; Zheng, Yi ; Cao, Zhi-Kai ; Wen, Shao-Hua</creatorcontrib><description>The model of the molecular weight distribution (MWD) of polypropylene produced in a loop reactor is established. The simulated MWD data of the polymers produced in steady‐state polymerizations agree with the actual data collected from certain plant. The simulated weight‐average molecular weight data also agree with the plant data in start‐up processes. Furthermore, the model can be used to simulate the influence of the operation parameters on the MWD of the polymers produced in the steady‐state polymerizations as well as the dynamic polymerizations. The simulated results of the steady state polymerizations show the MWD width of polypropylene decreases with the increase of both the propylene flow and the hydrogen flow, but increases with the increase of the catalyst flow. We also find the weight fraction of the polymers with short chains increases with the increase of both the propylene flow and the hydrogen flow, meanwhile, a small shift of the MWD curve to long chains can also be found as the catalyst flow increases. In the dynamic polymerizations, simulations indicate the MWD width and the weight fraction of the polymers with long chains all decrease in both of the start‐up process and the end‐up process of the polymerizations. POLYM. ENG. SCI., 47:1643–1649, 2007. © 2007 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.20848</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Distribution ; Exact sciences and technology ; Industrial polymers. Preparations ; Mathematical models ; Molecular weight ; Molecular weights ; Polymer industry, paints, wood ; Polypropylene ; Properties ; Reactors ; Technology of polymers ; Thermoplastics</subject><ispartof>Polymer engineering and science, 2007-10, Vol.47 (10), p.1643-1649</ispartof><rights>Copyright © 2007 Society of Plastics Engineers</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Oct 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3</citedby><cites>FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19127886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Zheng-Hong</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Cao, Zhi-Kai</creatorcontrib><creatorcontrib>Wen, Shao-Hua</creatorcontrib><title>Mathematical modeling of the molecular weight distribution of polypropylene produced in a loop reactor</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The model of the molecular weight distribution (MWD) of polypropylene produced in a loop reactor is established. The simulated MWD data of the polymers produced in steady‐state polymerizations agree with the actual data collected from certain plant. The simulated weight‐average molecular weight data also agree with the plant data in start‐up processes. Furthermore, the model can be used to simulate the influence of the operation parameters on the MWD of the polymers produced in the steady‐state polymerizations as well as the dynamic polymerizations. The simulated results of the steady state polymerizations show the MWD width of polypropylene decreases with the increase of both the propylene flow and the hydrogen flow, but increases with the increase of the catalyst flow. We also find the weight fraction of the polymers with short chains increases with the increase of both the propylene flow and the hydrogen flow, meanwhile, a small shift of the MWD curve to long chains can also be found as the catalyst flow increases. In the dynamic polymerizations, simulations indicate the MWD width and the weight fraction of the polymers with long chains all decrease in both of the start‐up process and the end‐up process of the polymerizations. POLYM. ENG. SCI., 47:1643–1649, 2007. © 2007 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Distribution</subject><subject>Exact sciences and technology</subject><subject>Industrial polymers. Preparations</subject><subject>Mathematical models</subject><subject>Molecular weight</subject><subject>Molecular weights</subject><subject>Polymer industry, paints, wood</subject><subject>Polypropylene</subject><subject>Properties</subject><subject>Reactors</subject><subject>Technology of polymers</subject><subject>Thermoplastics</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kk1vEzEQhlcIJELhwD9YIYHEYVN_ZHe9x6oqpVIaKj7UozXxjlMXZ721d9Xm3zNpUhAoyAfbo2dez8zrLHvL2ZQzJo577KaCqZl6lk14OVOFqOTseTZhTIpCKqVeZq9SumXEyrKZZPYShhtcw-AM-HwdWvSuW-XB5hSmu0czeoj5PbrVzZC3Lg3RLcfBhW4L9cFv-hj6jccOczq1o8E2d10OuQ-hzyOCGUJ8nb2w4BO-2e9H2Y9PZ99PPxfzL-cXpyfzwpS1UEU1A2mV4kLIVtXcoOQWQdXKCjHjjDdMKAsg64qjaloBS1FasTRiScEGQR5lH3a6VMrdiGnQa5cMeg8dhjFpyTgvy6om8N0_4G0YY0e1acFVRY-VJUHFDlqBR-06G4YIZkWtRvChQ-sofMKrpq4qxiripwd4Wi2unTmY8PGvBGIGfBhWMKakL759PciaGFKKaHUf3RriRnOmt95r8l4_ek_s-313kMhXG6EzLv1JaLioldpqHu-4eyps839BfXW2eFLej4Q-Aj78zoD4U9NU61JfL851c3l1Pa_mTC_kLzUpy2o</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Luo, Zheng-Hong</creator><creator>Zheng, Yi</creator><creator>Cao, Zhi-Kai</creator><creator>Wen, Shao-Hua</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200710</creationdate><title>Mathematical modeling of the molecular weight distribution of polypropylene produced in a loop reactor</title><author>Luo, Zheng-Hong ; Zheng, Yi ; Cao, Zhi-Kai ; Wen, Shao-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Distribution</topic><topic>Exact sciences and technology</topic><topic>Industrial polymers. Preparations</topic><topic>Mathematical models</topic><topic>Molecular weight</topic><topic>Molecular weights</topic><topic>Polymer industry, paints, wood</topic><topic>Polypropylene</topic><topic>Properties</topic><topic>Reactors</topic><topic>Technology of polymers</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zheng-Hong</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Cao, Zhi-Kai</creatorcontrib><creatorcontrib>Wen, Shao-Hua</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zheng-Hong</au><au>Zheng, Yi</au><au>Cao, Zhi-Kai</au><au>Wen, Shao-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of the molecular weight distribution of polypropylene produced in a loop reactor</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2007-10</date><risdate>2007</risdate><volume>47</volume><issue>10</issue><spage>1643</spage><epage>1649</epage><pages>1643-1649</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The model of the molecular weight distribution (MWD) of polypropylene produced in a loop reactor is established. The simulated MWD data of the polymers produced in steady‐state polymerizations agree with the actual data collected from certain plant. The simulated weight‐average molecular weight data also agree with the plant data in start‐up processes. Furthermore, the model can be used to simulate the influence of the operation parameters on the MWD of the polymers produced in the steady‐state polymerizations as well as the dynamic polymerizations. The simulated results of the steady state polymerizations show the MWD width of polypropylene decreases with the increase of both the propylene flow and the hydrogen flow, but increases with the increase of the catalyst flow. We also find the weight fraction of the polymers with short chains increases with the increase of both the propylene flow and the hydrogen flow, meanwhile, a small shift of the MWD curve to long chains can also be found as the catalyst flow increases. In the dynamic polymerizations, simulations indicate the MWD width and the weight fraction of the polymers with long chains all decrease in both of the start‐up process and the end‐up process of the polymerizations. POLYM. ENG. SCI., 47:1643–1649, 2007. © 2007 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.20848</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2007-10, Vol.47 (10), p.1643-1649 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_30115567 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences Distribution Exact sciences and technology Industrial polymers. Preparations Mathematical models Molecular weight Molecular weights Polymer industry, paints, wood Polypropylene Properties Reactors Technology of polymers Thermoplastics |
title | Mathematical modeling of the molecular weight distribution of polypropylene produced in a loop reactor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20the%20molecular%20weight%20distribution%20of%20polypropylene%20produced%20in%20a%20loop%20reactor&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Luo,%20Zheng-Hong&rft.date=2007-10&rft.volume=47&rft.issue=10&rft.spage=1643&rft.epage=1649&rft.pages=1643-1649&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.20848&rft_dat=%3Cgale_proqu%3EA169766006%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5728-64a3f881223d871ce31fea878f2241019028faa3761e89d2ab25f2bc2baa39ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218641055&rft_id=info:pmid/&rft_galeid=A169766006&rfr_iscdi=true |