Loading…

A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements

This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the pr...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2007-09, Vol.196 (45), p.4690-4711
Main Authors: Haikal, G., Hjelmstad, K.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3
cites cdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3
container_end_page 4711
container_issue 45
container_start_page 4690
container_title Computer methods in applied mechanics and engineering
container_volume 196
creator Haikal, G.
Hjelmstad, K.D.
description This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.
doi_str_mv 10.1016/j.cma.2007.06.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30116702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782507002332</els_id><sourcerecordid>30116702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1EJbaUD8DNl_aW4D-Jk1VPCBVaCYkLd2uwx1qvEhtsZwXfvk53pd6Yy8zI772Rf4Rcc9ZyxtXNvjUztIKxoWWqZUyckQ0fh20juBzPyYaxrm-GUfQX5GvOe1Zr5GJDDrfU-eALUpxwxlCoi2leJig-BhodDTE0eY6x7KiJoYAp9AUyWro-J18ddT7EaZkxr176toBNvgZggolCsHSH77BDu66nI_kb-eJgynh16pfk-f7X893v5vHp4c_d7WNjOtGVpgMxuq0d5SD72u32xQ1KMZC9EdJBJ23fK6MsALdGjNJ2YgCH1g7SjcrIS_LjGPua4tuCuejZZ4PTBAHjkrVknKuBiSrkR6FJMeeETr8mP0P60JzpFbDe6wpYr4A1U5r983w_hUM2MLkEwfj837hlfaXeVd3Pow7rRw8ek86mcjNofUJTtI3-kyt_ASk3kyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30116702</pqid></control><display><type>article</type><title>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Haikal, G. ; Hjelmstad, K.D.</creator><creatorcontrib>Haikal, G. ; Hjelmstad, K.D.</creatorcontrib><description>This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2007.06.002</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Energy conservation ; Exact sciences and technology ; Finite deformations ; Fundamental areas of phenomenology (including applications) ; Gap functions ; Impact ; Mathematical methods in physics ; Mechanical contact (friction...) ; Midpoint rule ; Non-smooth contact ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2007-09, Vol.196 (45), p.4690-4711</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</citedby><cites>FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19050044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haikal, G.</creatorcontrib><creatorcontrib>Hjelmstad, K.D.</creatorcontrib><title>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</title><title>Computer methods in applied mechanics and engineering</title><description>This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.</description><subject>Computational techniques</subject><subject>Energy conservation</subject><subject>Exact sciences and technology</subject><subject>Finite deformations</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gap functions</subject><subject>Impact</subject><subject>Mathematical methods in physics</subject><subject>Mechanical contact (friction...)</subject><subject>Midpoint rule</subject><subject>Non-smooth contact</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxS1EJbaUD8DNl_aW4D-Jk1VPCBVaCYkLd2uwx1qvEhtsZwXfvk53pd6Yy8zI772Rf4Rcc9ZyxtXNvjUztIKxoWWqZUyckQ0fh20juBzPyYaxrm-GUfQX5GvOe1Zr5GJDDrfU-eALUpxwxlCoi2leJig-BhodDTE0eY6x7KiJoYAp9AUyWro-J18ddT7EaZkxr176toBNvgZggolCsHSH77BDu66nI_kb-eJgynh16pfk-f7X893v5vHp4c_d7WNjOtGVpgMxuq0d5SD72u32xQ1KMZC9EdJBJ23fK6MsALdGjNJ2YgCH1g7SjcrIS_LjGPua4tuCuejZZ4PTBAHjkrVknKuBiSrkR6FJMeeETr8mP0P60JzpFbDe6wpYr4A1U5r983w_hUM2MLkEwfj837hlfaXeVd3Pow7rRw8ek86mcjNofUJTtI3-kyt_ASk3kyU</recordid><startdate>20070915</startdate><enddate>20070915</enddate><creator>Haikal, G.</creator><creator>Hjelmstad, K.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070915</creationdate><title>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</title><author>Haikal, G. ; Hjelmstad, K.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Energy conservation</topic><topic>Exact sciences and technology</topic><topic>Finite deformations</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gap functions</topic><topic>Impact</topic><topic>Mathematical methods in physics</topic><topic>Mechanical contact (friction...)</topic><topic>Midpoint rule</topic><topic>Non-smooth contact</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haikal, G.</creatorcontrib><creatorcontrib>Hjelmstad, K.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haikal, G.</au><au>Hjelmstad, K.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2007-09-15</date><risdate>2007</risdate><volume>196</volume><issue>45</issue><spage>4690</spage><epage>4711</epage><pages>4690-4711</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2007.06.002</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2007-09, Vol.196 (45), p.4690-4711
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_30116702
source ScienceDirect Freedom Collection 2022-2024
subjects Computational techniques
Energy conservation
Exact sciences and technology
Finite deformations
Fundamental areas of phenomenology (including applications)
Gap functions
Impact
Mathematical methods in physics
Mechanical contact (friction...)
Midpoint rule
Non-smooth contact
Physics
Solid mechanics
Structural and continuum mechanics
title A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20formulation%20of%20non-smooth%20contact%20based%20on%20oriented%20volumes%20for%20quadrilateral%20and%20hexahedral%20elements&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Haikal,%20G.&rft.date=2007-09-15&rft.volume=196&rft.issue=45&rft.spage=4690&rft.epage=4711&rft.pages=4690-4711&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2007.06.002&rft_dat=%3Cproquest_cross%3E30116702%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30116702&rft_id=info:pmid/&rfr_iscdi=true