Loading…
A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements
This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the pr...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2007-09, Vol.196 (45), p.4690-4711 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3 |
container_end_page | 4711 |
container_issue | 45 |
container_start_page | 4690 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 196 |
creator | Haikal, G. Hjelmstad, K.D. |
description | This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm. |
doi_str_mv | 10.1016/j.cma.2007.06.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30116702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782507002332</els_id><sourcerecordid>30116702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1EJbaUD8DNl_aW4D-Jk1VPCBVaCYkLd2uwx1qvEhtsZwXfvk53pd6Yy8zI772Rf4Rcc9ZyxtXNvjUztIKxoWWqZUyckQ0fh20juBzPyYaxrm-GUfQX5GvOe1Zr5GJDDrfU-eALUpxwxlCoi2leJig-BhodDTE0eY6x7KiJoYAp9AUyWro-J18ddT7EaZkxr176toBNvgZggolCsHSH77BDu66nI_kb-eJgynh16pfk-f7X893v5vHp4c_d7WNjOtGVpgMxuq0d5SD72u32xQ1KMZC9EdJBJ23fK6MsALdGjNJ2YgCH1g7SjcrIS_LjGPua4tuCuejZZ4PTBAHjkrVknKuBiSrkR6FJMeeETr8mP0P60JzpFbDe6wpYr4A1U5r983w_hUM2MLkEwfj837hlfaXeVd3Pow7rRw8ek86mcjNofUJTtI3-kyt_ASk3kyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30116702</pqid></control><display><type>article</type><title>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Haikal, G. ; Hjelmstad, K.D.</creator><creatorcontrib>Haikal, G. ; Hjelmstad, K.D.</creatorcontrib><description>This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2007.06.002</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Energy conservation ; Exact sciences and technology ; Finite deformations ; Fundamental areas of phenomenology (including applications) ; Gap functions ; Impact ; Mathematical methods in physics ; Mechanical contact (friction...) ; Midpoint rule ; Non-smooth contact ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2007-09, Vol.196 (45), p.4690-4711</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</citedby><cites>FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19050044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haikal, G.</creatorcontrib><creatorcontrib>Hjelmstad, K.D.</creatorcontrib><title>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</title><title>Computer methods in applied mechanics and engineering</title><description>This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.</description><subject>Computational techniques</subject><subject>Energy conservation</subject><subject>Exact sciences and technology</subject><subject>Finite deformations</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gap functions</subject><subject>Impact</subject><subject>Mathematical methods in physics</subject><subject>Mechanical contact (friction...)</subject><subject>Midpoint rule</subject><subject>Non-smooth contact</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxS1EJbaUD8DNl_aW4D-Jk1VPCBVaCYkLd2uwx1qvEhtsZwXfvk53pd6Yy8zI772Rf4Rcc9ZyxtXNvjUztIKxoWWqZUyckQ0fh20juBzPyYaxrm-GUfQX5GvOe1Zr5GJDDrfU-eALUpxwxlCoi2leJig-BhodDTE0eY6x7KiJoYAp9AUyWro-J18ddT7EaZkxr176toBNvgZggolCsHSH77BDu66nI_kb-eJgynh16pfk-f7X893v5vHp4c_d7WNjOtGVpgMxuq0d5SD72u32xQ1KMZC9EdJBJ23fK6MsALdGjNJ2YgCH1g7SjcrIS_LjGPua4tuCuejZZ4PTBAHjkrVknKuBiSrkR6FJMeeETr8mP0P60JzpFbDe6wpYr4A1U5r983w_hUM2MLkEwfj837hlfaXeVd3Pow7rRw8ek86mcjNofUJTtI3-kyt_ASk3kyU</recordid><startdate>20070915</startdate><enddate>20070915</enddate><creator>Haikal, G.</creator><creator>Hjelmstad, K.D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070915</creationdate><title>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</title><author>Haikal, G. ; Hjelmstad, K.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Energy conservation</topic><topic>Exact sciences and technology</topic><topic>Finite deformations</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gap functions</topic><topic>Impact</topic><topic>Mathematical methods in physics</topic><topic>Mechanical contact (friction...)</topic><topic>Midpoint rule</topic><topic>Non-smooth contact</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haikal, G.</creatorcontrib><creatorcontrib>Hjelmstad, K.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haikal, G.</au><au>Hjelmstad, K.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2007-09-15</date><risdate>2007</risdate><volume>196</volume><issue>45</issue><spage>4690</spage><epage>4711</epage><pages>4690-4711</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>This paper concerns the finite element modeling of contact between solid bodies, with a special emphasis on the treatment of non-smooth conditions. A new approach for the formulation of the contact constraint that allows for a simple and unified treatment of all potential contact scenarios in the presence of large deformations is presented. Based on the calculation of an oriented volume, this approach possesses the ability to resolve complicated contact scenarios efficiently, while being simple to implement and more widely applicable than the contact formulations available to-date. We show that the formulation boils down to a node-to-surface gap function that works effectively for non-smooth contact situations. The numerical implementation using the midpoint rule shows the need to guarantee the conservation of the total energy during impact, for which a Lagrange multiplier method is used. The result is a robust contact detection and resolution algorithm.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2007.06.002</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2007-09, Vol.196 (45), p.4690-4711 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_30116702 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computational techniques Energy conservation Exact sciences and technology Finite deformations Fundamental areas of phenomenology (including applications) Gap functions Impact Mathematical methods in physics Mechanical contact (friction...) Midpoint rule Non-smooth contact Physics Solid mechanics Structural and continuum mechanics |
title | A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20formulation%20of%20non-smooth%20contact%20based%20on%20oriented%20volumes%20for%20quadrilateral%20and%20hexahedral%20elements&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Haikal,%20G.&rft.date=2007-09-15&rft.volume=196&rft.issue=45&rft.spage=4690&rft.epage=4711&rft.pages=4690-4711&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2007.06.002&rft_dat=%3Cproquest_cross%3E30116702%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-4a28f9d83735f9dd9bf7660a35c23fa43d556c6daa1dc283d427afedd73f86c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30116702&rft_id=info:pmid/&rfr_iscdi=true |