Loading…

Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers

The objective of the work is to exploit the processing advantages of c‐PBT oligomers, essentially required in industrial practice to produce new, robust, multifunctional hybrid copolymers of c‐PBT oligomers in a single reaction‐molding step, which will be suitable for the use in continuous fiber com...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2007-10, Vol.47 (10), p.1536-1543
Main Authors: Tripathy, Amiya R., Farris, Richard J., MacKnight, William J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93
cites cdi_FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93
container_end_page 1543
container_issue 10
container_start_page 1536
container_title Polymer engineering and science
container_volume 47
creator Tripathy, Amiya R.
Farris, Richard J.
MacKnight, William J.
description The objective of the work is to exploit the processing advantages of c‐PBT oligomers, essentially required in industrial practice to produce new, robust, multifunctional hybrid copolymers of c‐PBT oligomers in a single reaction‐molding step, which will be suitable for the use in continuous fiber composites with excellent flame retardant properties. In this article a series of copolyesters were synthesized by using in situ polymerization of cyclic poly(butylene terepthalate) oligomers (c‐PBT) and hydroxyl terminated bisphenols and hydroxylated siloxanes in the presence of a tin catalyst at a moderate temperature. The in situ copolymerization was conducted with various c‐PBT/tetrabromobisphenol A (TBBPA), bisphenol A diglycidyl ether (BPADGE) and Carbinol PDMS feed ratios respectively. The copolyesters were characterized by GPC, NMR, and DSC techniques. Pyrolysis‐combustion flow calorimeter (PCFC) and pyrolysis gas chromatography/mass spectrometry (PyGC/MS) studies were performed to characterize the fire retardant properties of the copolymers during combustion. POLYM. ENG. SCI., 47:1536–1543, 2007. © 2007 Society of Plastics Engineers
doi_str_mv 10.1002/pen.20875
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_30119701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A169765994</galeid><sourcerecordid>A169765994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93</originalsourceid><addsrcrecordid>eNp1kltv1DAQhSMEEkvhgX8QIYHoQ7a-JHH8WK1KqVotFRfxaDnOeOvixMF2YPPv8bILCLTID5ZH3zmaOeMse47REiNEzkYYlgQ1rHqQLXBVNgWpafkwWyBESUGbpnmcPQnhHiWWVnyRibX7BjbXxkPuIZgQ5RDzXkZvthBy7XyuXD-6YOLu6V2fq1lZo_LR2fl1O8XZwgB5BA_jXbyTVkY4zZ01G9eDD0-zR1raAM8O90n26c3Fx9Xb4ubd5dXq_KZQVUmrous6CsChRahlGBCVJSuR1qRiHBNNuCISiKQcswp3uqlZAiQGjIGStuX0JHu19x29-zpBiKI3QYG1cgA3BUERxpwhnMAX_4D3bvJD6k0Q3NQlSt4JKvbQRloQZtAueqk2aVAvrRtAm1Q-xzVndcV5mfjlET6dDnqjjgpO_xIkJsI2buQUgrj68P4oq7wLwYMWoze99LPASOyWLtLSxc-lJ_blYToZlLTay0GZ8EeQwmQN23me7bnvqbH5_4bi9mL9y_kQSfoisP2tkP6LSIEl8vP6UtTX5e3qmhJR0h_zWskp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218640867</pqid></control><display><type>article</type><title>Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tripathy, Amiya R. ; Farris, Richard J. ; MacKnight, William J.</creator><creatorcontrib>Tripathy, Amiya R. ; Farris, Richard J. ; MacKnight, William J.</creatorcontrib><description>The objective of the work is to exploit the processing advantages of c‐PBT oligomers, essentially required in industrial practice to produce new, robust, multifunctional hybrid copolymers of c‐PBT oligomers in a single reaction‐molding step, which will be suitable for the use in continuous fiber composites with excellent flame retardant properties. In this article a series of copolyesters were synthesized by using in situ polymerization of cyclic poly(butylene terepthalate) oligomers (c‐PBT) and hydroxyl terminated bisphenols and hydroxylated siloxanes in the presence of a tin catalyst at a moderate temperature. The in situ copolymerization was conducted with various c‐PBT/tetrabromobisphenol A (TBBPA), bisphenol A diglycidyl ether (BPADGE) and Carbinol PDMS feed ratios respectively. The copolyesters were characterized by GPC, NMR, and DSC techniques. Pyrolysis‐combustion flow calorimeter (PCFC) and pyrolysis gas chromatography/mass spectrometry (PyGC/MS) studies were performed to characterize the fire retardant properties of the copolymers during combustion. POLYM. ENG. SCI., 47:1536–1543, 2007. © 2007 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.20875</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Catalysts ; Chemical modifications ; Composition ; Copolymers ; Exact sciences and technology ; Fire resistant materials ; Fire resistant plastics ; Fire resistant polymers ; Inorganic and organomineral polymers ; Mass spectrometry ; Oligomers ; Physicochemistry of polymers ; Temperature ; Thermal properties ; Thermoplastic composites</subject><ispartof>Polymer engineering and science, 2007-10, Vol.47 (10), p.1536-1543</ispartof><rights>Copyright © 2007 Society of Plastics Engineers</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Oct 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93</citedby><cites>FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19127874$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tripathy, Amiya R.</creatorcontrib><creatorcontrib>Farris, Richard J.</creatorcontrib><creatorcontrib>MacKnight, William J.</creatorcontrib><title>Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The objective of the work is to exploit the processing advantages of c‐PBT oligomers, essentially required in industrial practice to produce new, robust, multifunctional hybrid copolymers of c‐PBT oligomers in a single reaction‐molding step, which will be suitable for the use in continuous fiber composites with excellent flame retardant properties. In this article a series of copolyesters were synthesized by using in situ polymerization of cyclic poly(butylene terepthalate) oligomers (c‐PBT) and hydroxyl terminated bisphenols and hydroxylated siloxanes in the presence of a tin catalyst at a moderate temperature. The in situ copolymerization was conducted with various c‐PBT/tetrabromobisphenol A (TBBPA), bisphenol A diglycidyl ether (BPADGE) and Carbinol PDMS feed ratios respectively. The copolyesters were characterized by GPC, NMR, and DSC techniques. Pyrolysis‐combustion flow calorimeter (PCFC) and pyrolysis gas chromatography/mass spectrometry (PyGC/MS) studies were performed to characterize the fire retardant properties of the copolymers during combustion. POLYM. ENG. SCI., 47:1536–1543, 2007. © 2007 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Chemical modifications</subject><subject>Composition</subject><subject>Copolymers</subject><subject>Exact sciences and technology</subject><subject>Fire resistant materials</subject><subject>Fire resistant plastics</subject><subject>Fire resistant polymers</subject><subject>Inorganic and organomineral polymers</subject><subject>Mass spectrometry</subject><subject>Oligomers</subject><subject>Physicochemistry of polymers</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermoplastic composites</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kltv1DAQhSMEEkvhgX8QIYHoQ7a-JHH8WK1KqVotFRfxaDnOeOvixMF2YPPv8bILCLTID5ZH3zmaOeMse47REiNEzkYYlgQ1rHqQLXBVNgWpafkwWyBESUGbpnmcPQnhHiWWVnyRibX7BjbXxkPuIZgQ5RDzXkZvthBy7XyuXD-6YOLu6V2fq1lZo_LR2fl1O8XZwgB5BA_jXbyTVkY4zZ01G9eDD0-zR1raAM8O90n26c3Fx9Xb4ubd5dXq_KZQVUmrous6CsChRahlGBCVJSuR1qRiHBNNuCISiKQcswp3uqlZAiQGjIGStuX0JHu19x29-zpBiKI3QYG1cgA3BUERxpwhnMAX_4D3bvJD6k0Q3NQlSt4JKvbQRloQZtAueqk2aVAvrRtAm1Q-xzVndcV5mfjlET6dDnqjjgpO_xIkJsI2buQUgrj68P4oq7wLwYMWoze99LPASOyWLtLSxc-lJ_blYToZlLTay0GZ8EeQwmQN23me7bnvqbH5_4bi9mL9y_kQSfoisP2tkP6LSIEl8vP6UtTX5e3qmhJR0h_zWskp</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Tripathy, Amiya R.</creator><creator>Farris, Richard J.</creator><creator>MacKnight, William J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200710</creationdate><title>Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers</title><author>Tripathy, Amiya R. ; Farris, Richard J. ; MacKnight, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Chemical modifications</topic><topic>Composition</topic><topic>Copolymers</topic><topic>Exact sciences and technology</topic><topic>Fire resistant materials</topic><topic>Fire resistant plastics</topic><topic>Fire resistant polymers</topic><topic>Inorganic and organomineral polymers</topic><topic>Mass spectrometry</topic><topic>Oligomers</topic><topic>Physicochemistry of polymers</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermoplastic composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathy, Amiya R.</creatorcontrib><creatorcontrib>Farris, Richard J.</creatorcontrib><creatorcontrib>MacKnight, William J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathy, Amiya R.</au><au>Farris, Richard J.</au><au>MacKnight, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2007-10</date><risdate>2007</risdate><volume>47</volume><issue>10</issue><spage>1536</spage><epage>1543</epage><pages>1536-1543</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The objective of the work is to exploit the processing advantages of c‐PBT oligomers, essentially required in industrial practice to produce new, robust, multifunctional hybrid copolymers of c‐PBT oligomers in a single reaction‐molding step, which will be suitable for the use in continuous fiber composites with excellent flame retardant properties. In this article a series of copolyesters were synthesized by using in situ polymerization of cyclic poly(butylene terepthalate) oligomers (c‐PBT) and hydroxyl terminated bisphenols and hydroxylated siloxanes in the presence of a tin catalyst at a moderate temperature. The in situ copolymerization was conducted with various c‐PBT/tetrabromobisphenol A (TBBPA), bisphenol A diglycidyl ether (BPADGE) and Carbinol PDMS feed ratios respectively. The copolyesters were characterized by GPC, NMR, and DSC techniques. Pyrolysis‐combustion flow calorimeter (PCFC) and pyrolysis gas chromatography/mass spectrometry (PyGC/MS) studies were performed to characterize the fire retardant properties of the copolymers during combustion. POLYM. ENG. SCI., 47:1536–1543, 2007. © 2007 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.20875</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2007-10, Vol.47 (10), p.1536-1543
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_30119701
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
Catalysts
Chemical modifications
Composition
Copolymers
Exact sciences and technology
Fire resistant materials
Fire resistant plastics
Fire resistant polymers
Inorganic and organomineral polymers
Mass spectrometry
Oligomers
Physicochemistry of polymers
Temperature
Thermal properties
Thermoplastic composites
title Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20fire%20resistant%20matrixes%20for%20composites%20from%20cyclic%20poly(butylene%20terephthalate)%20oligomers&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Tripathy,%20Amiya%20R.&rft.date=2007-10&rft.volume=47&rft.issue=10&rft.spage=1536&rft.epage=1543&rft.pages=1536-1543&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.20875&rft_dat=%3Cgale_proqu%3EA169765994%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5435-ddd3ee9eb00b71e03a4740ff257912f29c2ae2a391751df867a47a1e11e32bb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218640867&rft_id=info:pmid/&rft_galeid=A169765994&rfr_iscdi=true