Loading…
Polarization analysis of a Pi2 pulsation using continuous wavelet transform
In this contribution, we extend a series of previous works focused on an investigation of signal’s polarization attributes using the continuous wavelet transform, where we proposed a method to map instantaneous polarization attributes of multicomponent signals in the wavelet domain and explicitly re...
Saved in:
Published in: | Earth, planets, and space planets, and space, 2007-01, Vol.59 (8), p.961-970 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this contribution, we extend a series of previous works focused on an investigation of signal’s polarization attributes using the continuous wavelet transform, where we proposed a method to map instantaneous polarization attributes of multicomponent signals in the wavelet domain and explicitly relate these attributes with the wavelet transform coefficients of the analyzed signal. In this work, we applied our polarization method to an examination of characteristics of Pi2 pulsations. We have shown some merits of the use of the continuous wavelet transform for the Pi2 pulsations’ analysis. First, we used our polarization method for the geomagnetic field data from the MSR, KAK, GUA, SMA, BLM and LAQ observatories and showed some correlations between the polarization parameters of pulsation and the station’s position (nightside or dayside). Secondly, we considered the signal’s north components of a pair of stations and demonstrated a time-frequency variations of the phase difference between two stations during the pulsation. |
---|---|
ISSN: | 1343-8832 1880-5981 1880-5981 |
DOI: | 10.1186/bf03352035 |