Loading…

Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials

A new numerical method to calculate the stress intensity factors (SIFs) of a three-dimensional interface crack between dissimilar anisotropic materials was developed. In this study, the M-integral method was employed for mode separation of the SIFs. The moving least-square method was utilized to cal...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2007-11, Vol.74 (16), p.2481-2497
Main Authors: Nagai, Masaki, Ikeda, Toru, Miyazaki, Noriyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new numerical method to calculate the stress intensity factors (SIFs) of a three-dimensional interface crack between dissimilar anisotropic materials was developed. In this study, the M-integral method was employed for mode separation of the SIFs. The moving least-square method was utilized to calculate the M-integral. Using the M-integral with the moving least-square method, SIFs can be automatically calculated with only the nodal displacements from the finite element method (FEM). Here, SIFs analyses of some typical three-dimensional problems are demonstrated. Excellent agreement was achieved between the numerical results obtained by the present method and the corresponding results proposed by other researchers. In addition, the SIFs of a single-edge crack, a through crack, and a semi-circular crack between two anisotropic solids in three-dimensional structures were analyzed.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2006.12.027