Loading…
Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application
A novel sulfonated polybenzimidazole, sulfonated poly[2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (SOPBI), was successfully prepared by post-sulfonation reaction of the parent polymer, poly[2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (OPBI), using concentrated and fuming sulfuric acid as the sul...
Saved in:
Published in: | Polymer (Guilford) 2007-09, Vol.48 (19), p.5556-5564 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel sulfonated polybenzimidazole, sulfonated poly[2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (SOPBI), was successfully prepared by post-sulfonation reaction of the parent polymer, poly[2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (OPBI), using concentrated and fuming sulfuric acid as the sulfonating reagent at 80°C, and the degree of sulfonation (DS) could be regulated by controlling the reaction conditions. No significant polymer degradation was observed in the post-sulfonation processes. Direct polymerization of 4,4′-dicarboxydiphenyl ether-2,2′-disulfonic acid disodium salt (DCDPEDS) and 3,3′-diaminobenzidine (DABz), however, resulted in insoluble gels either in polyphosphoric acid (PPA) or in phosphorus pentoxide/methanesulfonic acid (PPMA) in a ratio of 1:10 by weight reaction medium. The SOPBIs prepared by the post-sulfonation method showed good solubility in dimethyl sulfoxide (DMSO), high thermal stability, good film forming ability and excellent mechanical properties. Cross-linked SOPBI membranes were successfully prepared by thermal treatment of phosphoric acid-doped SOPBI membranes at 180°C in vacuo for 20h and the resulting cross-linked membranes showed much improved water stability and radical oxidative stability in comparison with the corresponding uncross-linked ones, while the proton conductivity did not change largely. Highly proton conductive (150mScm−1, 120°C in water) and water stable SOPBI membrane was developed. |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2007.07.029 |