Loading…

The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol-gel method

TiO2-coated activated carbon (TiO2/AC) composites and pure TiO2 powders were prepared by a sol-gel method using tetrabutylorthotitanate as a precursor. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), X-ray photoelect...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2007-09, Vol.253 (23), p.9254-9258
Main Authors: Li, Youji, Zhang, Shiying, Yu, Qumin, Yin, Wenbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TiO2-coated activated carbon (TiO2/AC) composites and pure TiO2 powders were prepared by a sol-gel method using tetrabutylorthotitanate as a precursor. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), X-ray photoelectron spectrum (XPS) and nitrogen absorption. The photoactivity of samples was evaluated by methylene blue (MB) degradation. The analysis results show that compared with pure TiO2 powders, the spherical-shaped TiO2 particles are well-dispersed in the AC matrix and the size of the resulting TiO2 crystallites decreases to below 40nm with increasing phase transformation temperature. The AC matrix creates anti-calcination effects and shows interfacial energy effects that control the growth of the TiO2 particles, baffle the anatase to rutile phase transition, and cumber the TiO2 particles to agglomerate. Compared with the surface areas of TiO2 powders, the combination of TiO2 and AC forms composites with high surface areas which are slightly affected by calcination temperature. By AC support, the photoactivity of TiO2 is increased in MB photocatalytic course, possible because active carbon increases photocatalytic activity of TiO2 particles by producing high concentration of organic compound near TiO2, and small-size TiO2 particles are well-dispersed on the surface of AC.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2007.05.057