Loading…

Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels

Summary Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue,...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal 2024-08, Vol.22 (8), p.2312-2326
Main Authors: Yin, Pengfei, Fu, Xiuyi, Feng, Haiying, Yang, Yanyan, Xu, Jing, Zhang, Xuan, Wang, Min, Ji, Shenghui, Zhao, Binghao, Fang, Hui, Du, Xiaoxia, Li, Yaru, Hu, Shuting, Li, Kun, Xu, Shutu, Li, Zhigang, Liu, Fang, Xiao, Yingni, Wang, Yuandong, Li, Jiansheng, Yang, Xiaohong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893
container_end_page 2326
container_issue 8
container_start_page 2312
container_title Plant biotechnology journal
container_volume 22
creator Yin, Pengfei
Fu, Xiuyi
Feng, Haiying
Yang, Yanyan
Xu, Jing
Zhang, Xuan
Wang, Min
Ji, Shenghui
Zhao, Binghao
Fang, Hui
Du, Xiaoxia
Li, Yaru
Hu, Shuting
Li, Kun
Xu, Shutu
Li, Zhigang
Liu, Fang
Xiao, Yingni
Wang, Yuandong
Li, Jiansheng
Yang, Xiaohong
description Summary Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.
doi_str_mv 10.1111/pbi.14346
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3022568263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3022568263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893</originalsourceid><addsrcrecordid>eNp1kbtOwzAUhi0EgnIZeAFkiQWG0sR2XGcExE2qBAPM0UlyUtymdrCTIpjgDXhGngSXFgYkvPiX9emTz_kJ2Y-jkzicQZPrk1hwIddILxZy2B_KhK3_ZiG2yLb3kyhisUzkJtniKhGKK9Uj7yNtpjBGCqak4L0tNLTaGjqDptFmTHWIXd3qz7ePBhyaFmra2KarvzFPHc4xPLWPSMdosNUFzcFrT21FC3C2RWN1SefgVuKFEPQr0ik6g7XfJRsV1B73VvcOebi8uD-_7o9ur27OT0f9ggsl-7lQMVYJYqki5CBSFIthUihFpXLGWJoIiZJBIWWslORVkheJglRWaTlUKd8hR0tv4-xTh77NZtoXWNdg0HY-4xFjiVRM8oAe_kEntnMm_C5QioXdCR4F6nhJFc5677DKGqdn4F6yOMoWvWShl-y7l8AerIxdPsPyl_wpIgCDJfCsa3z535Tdnd0slV94IpmC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082548430</pqid></control><display><type>article</type><title>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Yin, Pengfei ; Fu, Xiuyi ; Feng, Haiying ; Yang, Yanyan ; Xu, Jing ; Zhang, Xuan ; Wang, Min ; Ji, Shenghui ; Zhao, Binghao ; Fang, Hui ; Du, Xiaoxia ; Li, Yaru ; Hu, Shuting ; Li, Kun ; Xu, Shutu ; Li, Zhigang ; Liu, Fang ; Xiao, Yingni ; Wang, Yuandong ; Li, Jiansheng ; Yang, Xiaohong</creator><creatorcontrib>Yin, Pengfei ; Fu, Xiuyi ; Feng, Haiying ; Yang, Yanyan ; Xu, Jing ; Zhang, Xuan ; Wang, Min ; Ji, Shenghui ; Zhao, Binghao ; Fang, Hui ; Du, Xiaoxia ; Li, Yaru ; Hu, Shuting ; Li, Kun ; Xu, Shutu ; Li, Zhigang ; Liu, Fang ; Xiao, Yingni ; Wang, Yuandong ; Li, Jiansheng ; Yang, Xiaohong</creatorcontrib><description>Summary Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14346</identifier><identifier>PMID: 38548388</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Association mapping ; Carotenoids ; Cereal crops ; Cloning ; Corn ; Critical components ; Crop diseases ; Crops ; Epistasis ; Gene mapping ; Genes ; Genetic diversity ; Genome-wide association studies ; Genomes ; Inbreeding ; Linkage analysis ; Loci ; Mapping ; Metabolic pathways ; Plant species ; Plastid terminal oxidase ; Population genetics ; Populations ; Quantitative trait loci ; Recombination hot spots ; Seeds ; Terminal oxidase ; Variance analysis</subject><ispartof>Plant biotechnology journal, 2024-08, Vol.22 (8), p.2312-2326</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893</cites><orcidid>0000-0003-1538-6834 ; 0000-0002-3400-9746 ; 0000-0002-9604-300X ; 0000-0001-6692-5119 ; 0000-0001-6438-948X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3082548430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082548430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,37013,44590,46052,46476,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38548388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Pengfei</creatorcontrib><creatorcontrib>Fu, Xiuyi</creatorcontrib><creatorcontrib>Feng, Haiying</creatorcontrib><creatorcontrib>Yang, Yanyan</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Ji, Shenghui</creatorcontrib><creatorcontrib>Zhao, Binghao</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><creatorcontrib>Du, Xiaoxia</creatorcontrib><creatorcontrib>Li, Yaru</creatorcontrib><creatorcontrib>Hu, Shuting</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xu, Shutu</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xiao, Yingni</creatorcontrib><creatorcontrib>Wang, Yuandong</creatorcontrib><creatorcontrib>Li, Jiansheng</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><title>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.</description><subject>Association mapping</subject><subject>Carotenoids</subject><subject>Cereal crops</subject><subject>Cloning</subject><subject>Corn</subject><subject>Critical components</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Epistasis</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Inbreeding</subject><subject>Linkage analysis</subject><subject>Loci</subject><subject>Mapping</subject><subject>Metabolic pathways</subject><subject>Plant species</subject><subject>Plastid terminal oxidase</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Quantitative trait loci</subject><subject>Recombination hot spots</subject><subject>Seeds</subject><subject>Terminal oxidase</subject><subject>Variance analysis</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kbtOwzAUhi0EgnIZeAFkiQWG0sR2XGcExE2qBAPM0UlyUtymdrCTIpjgDXhGngSXFgYkvPiX9emTz_kJ2Y-jkzicQZPrk1hwIddILxZy2B_KhK3_ZiG2yLb3kyhisUzkJtniKhGKK9Uj7yNtpjBGCqak4L0tNLTaGjqDptFmTHWIXd3qz7ePBhyaFmra2KarvzFPHc4xPLWPSMdosNUFzcFrT21FC3C2RWN1SefgVuKFEPQr0ik6g7XfJRsV1B73VvcOebi8uD-_7o9ur27OT0f9ggsl-7lQMVYJYqki5CBSFIthUihFpXLGWJoIiZJBIWWslORVkheJglRWaTlUKd8hR0tv4-xTh77NZtoXWNdg0HY-4xFjiVRM8oAe_kEntnMm_C5QioXdCR4F6nhJFc5677DKGqdn4F6yOMoWvWShl-y7l8AerIxdPsPyl_wpIgCDJfCsa3z535Tdnd0slV94IpmC</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Yin, Pengfei</creator><creator>Fu, Xiuyi</creator><creator>Feng, Haiying</creator><creator>Yang, Yanyan</creator><creator>Xu, Jing</creator><creator>Zhang, Xuan</creator><creator>Wang, Min</creator><creator>Ji, Shenghui</creator><creator>Zhao, Binghao</creator><creator>Fang, Hui</creator><creator>Du, Xiaoxia</creator><creator>Li, Yaru</creator><creator>Hu, Shuting</creator><creator>Li, Kun</creator><creator>Xu, Shutu</creator><creator>Li, Zhigang</creator><creator>Liu, Fang</creator><creator>Xiao, Yingni</creator><creator>Wang, Yuandong</creator><creator>Li, Jiansheng</creator><creator>Yang, Xiaohong</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1538-6834</orcidid><orcidid>https://orcid.org/0000-0002-3400-9746</orcidid><orcidid>https://orcid.org/0000-0002-9604-300X</orcidid><orcidid>https://orcid.org/0000-0001-6692-5119</orcidid><orcidid>https://orcid.org/0000-0001-6438-948X</orcidid></search><sort><creationdate>202408</creationdate><title>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</title><author>Yin, Pengfei ; Fu, Xiuyi ; Feng, Haiying ; Yang, Yanyan ; Xu, Jing ; Zhang, Xuan ; Wang, Min ; Ji, Shenghui ; Zhao, Binghao ; Fang, Hui ; Du, Xiaoxia ; Li, Yaru ; Hu, Shuting ; Li, Kun ; Xu, Shutu ; Li, Zhigang ; Liu, Fang ; Xiao, Yingni ; Wang, Yuandong ; Li, Jiansheng ; Yang, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Association mapping</topic><topic>Carotenoids</topic><topic>Cereal crops</topic><topic>Cloning</topic><topic>Corn</topic><topic>Critical components</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Epistasis</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Inbreeding</topic><topic>Linkage analysis</topic><topic>Loci</topic><topic>Mapping</topic><topic>Metabolic pathways</topic><topic>Plant species</topic><topic>Plastid terminal oxidase</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Quantitative trait loci</topic><topic>Recombination hot spots</topic><topic>Seeds</topic><topic>Terminal oxidase</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Pengfei</creatorcontrib><creatorcontrib>Fu, Xiuyi</creatorcontrib><creatorcontrib>Feng, Haiying</creatorcontrib><creatorcontrib>Yang, Yanyan</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Ji, Shenghui</creatorcontrib><creatorcontrib>Zhao, Binghao</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><creatorcontrib>Du, Xiaoxia</creatorcontrib><creatorcontrib>Li, Yaru</creatorcontrib><creatorcontrib>Hu, Shuting</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xu, Shutu</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xiao, Yingni</creatorcontrib><creatorcontrib>Wang, Yuandong</creatorcontrib><creatorcontrib>Li, Jiansheng</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Pengfei</au><au>Fu, Xiuyi</au><au>Feng, Haiying</au><au>Yang, Yanyan</au><au>Xu, Jing</au><au>Zhang, Xuan</au><au>Wang, Min</au><au>Ji, Shenghui</au><au>Zhao, Binghao</au><au>Fang, Hui</au><au>Du, Xiaoxia</au><au>Li, Yaru</au><au>Hu, Shuting</au><au>Li, Kun</au><au>Xu, Shutu</au><au>Li, Zhigang</au><au>Liu, Fang</au><au>Xiao, Yingni</au><au>Wang, Yuandong</au><au>Li, Jiansheng</au><au>Yang, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-08</date><risdate>2024</risdate><volume>22</volume><issue>8</issue><spage>2312</spage><epage>2326</epage><pages>2312-2326</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38548388</pmid><doi>10.1111/pbi.14346</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1538-6834</orcidid><orcidid>https://orcid.org/0000-0002-3400-9746</orcidid><orcidid>https://orcid.org/0000-0002-9604-300X</orcidid><orcidid>https://orcid.org/0000-0001-6692-5119</orcidid><orcidid>https://orcid.org/0000-0001-6438-948X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2024-08, Vol.22 (8), p.2312-2326
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_proquest_miscellaneous_3022568263
source PubMed Central (Open Access); Publicly Available Content (ProQuest); Wiley Open Access
subjects Association mapping
Carotenoids
Cereal crops
Cloning
Corn
Critical components
Crop diseases
Crops
Epistasis
Gene mapping
Genes
Genetic diversity
Genome-wide association studies
Genomes
Inbreeding
Linkage analysis
Loci
Mapping
Metabolic pathways
Plant species
Plastid terminal oxidase
Population genetics
Populations
Quantitative trait loci
Recombination hot spots
Seeds
Terminal oxidase
Variance analysis
title Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linkage%20and%20association%20mapping%20in%20multi%E2%80%90parental%20populations%20reveal%20the%20genetic%20basis%20of%20carotenoid%20variation%20in%20maize%20kernels&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Yin,%20Pengfei&rft.date=2024-08&rft.volume=22&rft.issue=8&rft.spage=2312&rft.epage=2326&rft.pages=2312-2326&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14346&rft_dat=%3Cproquest_cross%3E3022568263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082548430&rft_id=info:pmid/38548388&rfr_iscdi=true