Loading…
Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels
Summary Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue,...
Saved in:
Published in: | Plant biotechnology journal 2024-08, Vol.22 (8), p.2312-2326 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893 |
container_end_page | 2326 |
container_issue | 8 |
container_start_page | 2312 |
container_title | Plant biotechnology journal |
container_volume | 22 |
creator | Yin, Pengfei Fu, Xiuyi Feng, Haiying Yang, Yanyan Xu, Jing Zhang, Xuan Wang, Min Ji, Shenghui Zhao, Binghao Fang, Hui Du, Xiaoxia Li, Yaru Hu, Shuting Li, Kun Xu, Shutu Li, Zhigang Liu, Fang Xiao, Yingni Wang, Yuandong Li, Jiansheng Yang, Xiaohong |
description | Summary
Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification. |
doi_str_mv | 10.1111/pbi.14346 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3022568263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3022568263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893</originalsourceid><addsrcrecordid>eNp1kbtOwzAUhi0EgnIZeAFkiQWG0sR2XGcExE2qBAPM0UlyUtymdrCTIpjgDXhGngSXFgYkvPiX9emTz_kJ2Y-jkzicQZPrk1hwIddILxZy2B_KhK3_ZiG2yLb3kyhisUzkJtniKhGKK9Uj7yNtpjBGCqak4L0tNLTaGjqDptFmTHWIXd3qz7ePBhyaFmra2KarvzFPHc4xPLWPSMdosNUFzcFrT21FC3C2RWN1SefgVuKFEPQr0ik6g7XfJRsV1B73VvcOebi8uD-_7o9ur27OT0f9ggsl-7lQMVYJYqki5CBSFIthUihFpXLGWJoIiZJBIWWslORVkheJglRWaTlUKd8hR0tv4-xTh77NZtoXWNdg0HY-4xFjiVRM8oAe_kEntnMm_C5QioXdCR4F6nhJFc5677DKGqdn4F6yOMoWvWShl-y7l8AerIxdPsPyl_wpIgCDJfCsa3z535Tdnd0slV94IpmC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082548430</pqid></control><display><type>article</type><title>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Yin, Pengfei ; Fu, Xiuyi ; Feng, Haiying ; Yang, Yanyan ; Xu, Jing ; Zhang, Xuan ; Wang, Min ; Ji, Shenghui ; Zhao, Binghao ; Fang, Hui ; Du, Xiaoxia ; Li, Yaru ; Hu, Shuting ; Li, Kun ; Xu, Shutu ; Li, Zhigang ; Liu, Fang ; Xiao, Yingni ; Wang, Yuandong ; Li, Jiansheng ; Yang, Xiaohong</creator><creatorcontrib>Yin, Pengfei ; Fu, Xiuyi ; Feng, Haiying ; Yang, Yanyan ; Xu, Jing ; Zhang, Xuan ; Wang, Min ; Ji, Shenghui ; Zhao, Binghao ; Fang, Hui ; Du, Xiaoxia ; Li, Yaru ; Hu, Shuting ; Li, Kun ; Xu, Shutu ; Li, Zhigang ; Liu, Fang ; Xiao, Yingni ; Wang, Yuandong ; Li, Jiansheng ; Yang, Xiaohong</creatorcontrib><description>Summary
Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14346</identifier><identifier>PMID: 38548388</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Association mapping ; Carotenoids ; Cereal crops ; Cloning ; Corn ; Critical components ; Crop diseases ; Crops ; Epistasis ; Gene mapping ; Genes ; Genetic diversity ; Genome-wide association studies ; Genomes ; Inbreeding ; Linkage analysis ; Loci ; Mapping ; Metabolic pathways ; Plant species ; Plastid terminal oxidase ; Population genetics ; Populations ; Quantitative trait loci ; Recombination hot spots ; Seeds ; Terminal oxidase ; Variance analysis</subject><ispartof>Plant biotechnology journal, 2024-08, Vol.22 (8), p.2312-2326</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893</cites><orcidid>0000-0003-1538-6834 ; 0000-0002-3400-9746 ; 0000-0002-9604-300X ; 0000-0001-6692-5119 ; 0000-0001-6438-948X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3082548430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082548430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,37013,44590,46052,46476,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38548388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Pengfei</creatorcontrib><creatorcontrib>Fu, Xiuyi</creatorcontrib><creatorcontrib>Feng, Haiying</creatorcontrib><creatorcontrib>Yang, Yanyan</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Ji, Shenghui</creatorcontrib><creatorcontrib>Zhao, Binghao</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><creatorcontrib>Du, Xiaoxia</creatorcontrib><creatorcontrib>Li, Yaru</creatorcontrib><creatorcontrib>Hu, Shuting</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xu, Shutu</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xiao, Yingni</creatorcontrib><creatorcontrib>Wang, Yuandong</creatorcontrib><creatorcontrib>Li, Jiansheng</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><title>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.</description><subject>Association mapping</subject><subject>Carotenoids</subject><subject>Cereal crops</subject><subject>Cloning</subject><subject>Corn</subject><subject>Critical components</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Epistasis</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Inbreeding</subject><subject>Linkage analysis</subject><subject>Loci</subject><subject>Mapping</subject><subject>Metabolic pathways</subject><subject>Plant species</subject><subject>Plastid terminal oxidase</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Quantitative trait loci</subject><subject>Recombination hot spots</subject><subject>Seeds</subject><subject>Terminal oxidase</subject><subject>Variance analysis</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kbtOwzAUhi0EgnIZeAFkiQWG0sR2XGcExE2qBAPM0UlyUtymdrCTIpjgDXhGngSXFgYkvPiX9emTz_kJ2Y-jkzicQZPrk1hwIddILxZy2B_KhK3_ZiG2yLb3kyhisUzkJtniKhGKK9Uj7yNtpjBGCqak4L0tNLTaGjqDptFmTHWIXd3qz7ePBhyaFmra2KarvzFPHc4xPLWPSMdosNUFzcFrT21FC3C2RWN1SefgVuKFEPQr0ik6g7XfJRsV1B73VvcOebi8uD-_7o9ur27OT0f9ggsl-7lQMVYJYqki5CBSFIthUihFpXLGWJoIiZJBIWWslORVkheJglRWaTlUKd8hR0tv4-xTh77NZtoXWNdg0HY-4xFjiVRM8oAe_kEntnMm_C5QioXdCR4F6nhJFc5677DKGqdn4F6yOMoWvWShl-y7l8AerIxdPsPyl_wpIgCDJfCsa3z535Tdnd0slV94IpmC</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Yin, Pengfei</creator><creator>Fu, Xiuyi</creator><creator>Feng, Haiying</creator><creator>Yang, Yanyan</creator><creator>Xu, Jing</creator><creator>Zhang, Xuan</creator><creator>Wang, Min</creator><creator>Ji, Shenghui</creator><creator>Zhao, Binghao</creator><creator>Fang, Hui</creator><creator>Du, Xiaoxia</creator><creator>Li, Yaru</creator><creator>Hu, Shuting</creator><creator>Li, Kun</creator><creator>Xu, Shutu</creator><creator>Li, Zhigang</creator><creator>Liu, Fang</creator><creator>Xiao, Yingni</creator><creator>Wang, Yuandong</creator><creator>Li, Jiansheng</creator><creator>Yang, Xiaohong</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1538-6834</orcidid><orcidid>https://orcid.org/0000-0002-3400-9746</orcidid><orcidid>https://orcid.org/0000-0002-9604-300X</orcidid><orcidid>https://orcid.org/0000-0001-6692-5119</orcidid><orcidid>https://orcid.org/0000-0001-6438-948X</orcidid></search><sort><creationdate>202408</creationdate><title>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</title><author>Yin, Pengfei ; Fu, Xiuyi ; Feng, Haiying ; Yang, Yanyan ; Xu, Jing ; Zhang, Xuan ; Wang, Min ; Ji, Shenghui ; Zhao, Binghao ; Fang, Hui ; Du, Xiaoxia ; Li, Yaru ; Hu, Shuting ; Li, Kun ; Xu, Shutu ; Li, Zhigang ; Liu, Fang ; Xiao, Yingni ; Wang, Yuandong ; Li, Jiansheng ; Yang, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Association mapping</topic><topic>Carotenoids</topic><topic>Cereal crops</topic><topic>Cloning</topic><topic>Corn</topic><topic>Critical components</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Epistasis</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Inbreeding</topic><topic>Linkage analysis</topic><topic>Loci</topic><topic>Mapping</topic><topic>Metabolic pathways</topic><topic>Plant species</topic><topic>Plastid terminal oxidase</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Quantitative trait loci</topic><topic>Recombination hot spots</topic><topic>Seeds</topic><topic>Terminal oxidase</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Pengfei</creatorcontrib><creatorcontrib>Fu, Xiuyi</creatorcontrib><creatorcontrib>Feng, Haiying</creatorcontrib><creatorcontrib>Yang, Yanyan</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Ji, Shenghui</creatorcontrib><creatorcontrib>Zhao, Binghao</creatorcontrib><creatorcontrib>Fang, Hui</creatorcontrib><creatorcontrib>Du, Xiaoxia</creatorcontrib><creatorcontrib>Li, Yaru</creatorcontrib><creatorcontrib>Hu, Shuting</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Xu, Shutu</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xiao, Yingni</creatorcontrib><creatorcontrib>Wang, Yuandong</creatorcontrib><creatorcontrib>Li, Jiansheng</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Pengfei</au><au>Fu, Xiuyi</au><au>Feng, Haiying</au><au>Yang, Yanyan</au><au>Xu, Jing</au><au>Zhang, Xuan</au><au>Wang, Min</au><au>Ji, Shenghui</au><au>Zhao, Binghao</au><au>Fang, Hui</au><au>Du, Xiaoxia</au><au>Li, Yaru</au><au>Hu, Shuting</au><au>Li, Kun</au><au>Xu, Shutu</au><au>Li, Zhigang</au><au>Liu, Fang</au><au>Xiao, Yingni</au><au>Wang, Yuandong</au><au>Li, Jiansheng</au><au>Yang, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-08</date><risdate>2024</risdate><volume>22</volume><issue>8</issue><spage>2312</spage><epage>2326</epage><pages>2312-2326</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary
Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations. Single linkage mapping (SLM) and joint linkage mapping (JLM) identified 77 unique additive QTLs and 104 pairs of epistatic QTLs. Among these QTLs, we identified 22 overlapping hotspots of additive and epistatic loci, highlighting the important contributions of some QTLs to carotenoid levels through additive or epistatic mechanisms. A genome‐wide association study based on all RILs detected 244 candidate genes significantly associated with carotenoid traits, 23 of which were annotated as carotenoid pathway genes. Effect comparisons suggested that a small number of loci linked to pathway genes have substantial effects on carotenoid variation in our tested populations, but many loci not associated with pathway genes also make important contributions to carotenoid variation. We identified ZmPTOX as the causal gene for a QTL hotspot (Q10/JLM10/GWAS019); this gene encodes a putative plastid terminal oxidase that produces plastoquinone‐9 used by two enzymes in the carotenoid pathway. Natural variants in the promoter and second exon of ZmPTOX were found to alter carotenoid levels. This comprehensive assessment of the genetic mechanisms underlying carotenoid variation establishes a foundation for rewiring carotenoid metabolism and accumulation for efficient carotenoid biofortification.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>38548388</pmid><doi>10.1111/pbi.14346</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1538-6834</orcidid><orcidid>https://orcid.org/0000-0002-3400-9746</orcidid><orcidid>https://orcid.org/0000-0002-9604-300X</orcidid><orcidid>https://orcid.org/0000-0001-6692-5119</orcidid><orcidid>https://orcid.org/0000-0001-6438-948X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2024-08, Vol.22 (8), p.2312-2326 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_proquest_miscellaneous_3022568263 |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest); Wiley Open Access |
subjects | Association mapping Carotenoids Cereal crops Cloning Corn Critical components Crop diseases Crops Epistasis Gene mapping Genes Genetic diversity Genome-wide association studies Genomes Inbreeding Linkage analysis Loci Mapping Metabolic pathways Plant species Plastid terminal oxidase Population genetics Populations Quantitative trait loci Recombination hot spots Seeds Terminal oxidase Variance analysis |
title | Linkage and association mapping in multi‐parental populations reveal the genetic basis of carotenoid variation in maize kernels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linkage%20and%20association%20mapping%20in%20multi%E2%80%90parental%20populations%20reveal%20the%20genetic%20basis%20of%20carotenoid%20variation%20in%20maize%20kernels&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Yin,%20Pengfei&rft.date=2024-08&rft.volume=22&rft.issue=8&rft.spage=2312&rft.epage=2326&rft.pages=2312-2326&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14346&rft_dat=%3Cproquest_cross%3E3022568263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3486-b481ef5eed80e3a49e416569ad4f8b2229546e62ac6618863f5bc58a96f9d7893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082548430&rft_id=info:pmid/38548388&rfr_iscdi=true |