Loading…

Minimizing bias when using artificial intelligence in critical care medicine

•As artificial intelligence (AI) use in critical care increases, identifying and minimizing sources of bias is essential•Bias can be introduced (and be minimized) at all stages of the AI lifecycle•Reliance on AI in clinical practice without addressing bias may result in unfair and inequitable treatm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of critical care 2024-08, Vol.82, p.154796, Article 154796
Main Authors: Ranard, Benjamin L., Park, Soojin, Jia, Yugang, Zhang, Yiye, Alwan, Fatima, Celi, Leo Anthony, Lusczek, Elizabeth R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3
cites cdi_FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3
container_end_page
container_issue
container_start_page 154796
container_title Journal of critical care
container_volume 82
creator Ranard, Benjamin L.
Park, Soojin
Jia, Yugang
Zhang, Yiye
Alwan, Fatima
Celi, Leo Anthony
Lusczek, Elizabeth R.
description •As artificial intelligence (AI) use in critical care increases, identifying and minimizing sources of bias is essential•Bias can be introduced (and be minimized) at all stages of the AI lifecycle•Reliance on AI in clinical practice without addressing bias may result in unfair and inequitable treatment of patients•Diverse, multidisciplinary teams that are attuned to sources of bias may have the best chance of minimizing bias in AI
doi_str_mv 10.1016/j.jcrc.2024.154796
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3022569787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0883944124002831</els_id><sourcerecordid>3022569787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8OIldT-TDXiR4hdUvOh5STaTOqFN6m6i6K93Q6oHD56GYZ73ZXgIOWV0zihLLut5bZ2dc8rlnCmZZskemTKl0lgnTO2TKdVaxJmUbEKOvK8pZakQ6pBMhFaKS8WmZPmIDW7wC5tVVGDuo49XaKLeD3vuOqzQYr6OsOlgvcYVNBbCElmHHdpwsLmDaANlwBo4JgdVvvZwspsz8nJ787y4j5dPdw-L62VshZZdXIpEFpwXlAMIVTCbZTxlIrMFZ4KLMq0kKE4laMG1yqSiUqqEWZommmtbiRm5GHu3rn3rwXdmg96GB_MG2t4bQTlXSZbqNKDnf9C67V0TvgtUwphQUvNA8ZGyrvXeQWW2Dje5-zSMmsG1qc3g2gyuzeg6hM521X0RDPxGfuQG4GoEILh4R3DGWxwMlujAdqZs8b_-b1R0jWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061135482</pqid></control><display><type>article</type><title>Minimizing bias when using artificial intelligence in critical care medicine</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ranard, Benjamin L. ; Park, Soojin ; Jia, Yugang ; Zhang, Yiye ; Alwan, Fatima ; Celi, Leo Anthony ; Lusczek, Elizabeth R.</creator><creatorcontrib>Ranard, Benjamin L. ; Park, Soojin ; Jia, Yugang ; Zhang, Yiye ; Alwan, Fatima ; Celi, Leo Anthony ; Lusczek, Elizabeth R.</creatorcontrib><description>•As artificial intelligence (AI) use in critical care increases, identifying and minimizing sources of bias is essential•Bias can be introduced (and be minimized) at all stages of the AI lifecycle•Reliance on AI in clinical practice without addressing bias may result in unfair and inequitable treatment of patients•Diverse, multidisciplinary teams that are attuned to sources of bias may have the best chance of minimizing bias in AI</description><identifier>ISSN: 0883-9441</identifier><identifier>ISSN: 1557-8615</identifier><identifier>EISSN: 1557-8615</identifier><identifier>DOI: 10.1016/j.jcrc.2024.154796</identifier><identifier>PMID: 38552451</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Artificial Intelligence ; Bias ; COVID-19 ; Critical Care ; Critical Care - methods ; Decision making ; Disparities ; Electronic health records ; Fairness ; Health care access ; Health care expenditures ; Health equity ; Humans ; Intensive care ; Machine learning ; Missing data ; Palliative care ; Pandemics ; Sepsis ; Ventilators</subject><ispartof>Journal of critical care, 2024-08, Vol.82, p.154796, Article 154796</ispartof><rights>2023</rights><rights>Copyright Elsevier Limited Aug 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3</citedby><cites>FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38552451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranard, Benjamin L.</creatorcontrib><creatorcontrib>Park, Soojin</creatorcontrib><creatorcontrib>Jia, Yugang</creatorcontrib><creatorcontrib>Zhang, Yiye</creatorcontrib><creatorcontrib>Alwan, Fatima</creatorcontrib><creatorcontrib>Celi, Leo Anthony</creatorcontrib><creatorcontrib>Lusczek, Elizabeth R.</creatorcontrib><title>Minimizing bias when using artificial intelligence in critical care medicine</title><title>Journal of critical care</title><addtitle>J Crit Care</addtitle><description>•As artificial intelligence (AI) use in critical care increases, identifying and minimizing sources of bias is essential•Bias can be introduced (and be minimized) at all stages of the AI lifecycle•Reliance on AI in clinical practice without addressing bias may result in unfair and inequitable treatment of patients•Diverse, multidisciplinary teams that are attuned to sources of bias may have the best chance of minimizing bias in AI</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bias</subject><subject>COVID-19</subject><subject>Critical Care</subject><subject>Critical Care - methods</subject><subject>Decision making</subject><subject>Disparities</subject><subject>Electronic health records</subject><subject>Fairness</subject><subject>Health care access</subject><subject>Health care expenditures</subject><subject>Health equity</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Machine learning</subject><subject>Missing data</subject><subject>Palliative care</subject><subject>Pandemics</subject><subject>Sepsis</subject><subject>Ventilators</subject><issn>0883-9441</issn><issn>1557-8615</issn><issn>1557-8615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8OIldT-TDXiR4hdUvOh5STaTOqFN6m6i6K93Q6oHD56GYZ73ZXgIOWV0zihLLut5bZ2dc8rlnCmZZskemTKl0lgnTO2TKdVaxJmUbEKOvK8pZakQ6pBMhFaKS8WmZPmIDW7wC5tVVGDuo49XaKLeD3vuOqzQYr6OsOlgvcYVNBbCElmHHdpwsLmDaANlwBo4JgdVvvZwspsz8nJ787y4j5dPdw-L62VshZZdXIpEFpwXlAMIVTCbZTxlIrMFZ4KLMq0kKE4laMG1yqSiUqqEWZommmtbiRm5GHu3rn3rwXdmg96GB_MG2t4bQTlXSZbqNKDnf9C67V0TvgtUwphQUvNA8ZGyrvXeQWW2Dje5-zSMmsG1qc3g2gyuzeg6hM521X0RDPxGfuQG4GoEILh4R3DGWxwMlujAdqZs8b_-b1R0jWg</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Ranard, Benjamin L.</creator><creator>Park, Soojin</creator><creator>Jia, Yugang</creator><creator>Zhang, Yiye</creator><creator>Alwan, Fatima</creator><creator>Celi, Leo Anthony</creator><creator>Lusczek, Elizabeth R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202408</creationdate><title>Minimizing bias when using artificial intelligence in critical care medicine</title><author>Ranard, Benjamin L. ; Park, Soojin ; Jia, Yugang ; Zhang, Yiye ; Alwan, Fatima ; Celi, Leo Anthony ; Lusczek, Elizabeth R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bias</topic><topic>COVID-19</topic><topic>Critical Care</topic><topic>Critical Care - methods</topic><topic>Decision making</topic><topic>Disparities</topic><topic>Electronic health records</topic><topic>Fairness</topic><topic>Health care access</topic><topic>Health care expenditures</topic><topic>Health equity</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Machine learning</topic><topic>Missing data</topic><topic>Palliative care</topic><topic>Pandemics</topic><topic>Sepsis</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranard, Benjamin L.</creatorcontrib><creatorcontrib>Park, Soojin</creatorcontrib><creatorcontrib>Jia, Yugang</creatorcontrib><creatorcontrib>Zhang, Yiye</creatorcontrib><creatorcontrib>Alwan, Fatima</creatorcontrib><creatorcontrib>Celi, Leo Anthony</creatorcontrib><creatorcontrib>Lusczek, Elizabeth R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of critical care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranard, Benjamin L.</au><au>Park, Soojin</au><au>Jia, Yugang</au><au>Zhang, Yiye</au><au>Alwan, Fatima</au><au>Celi, Leo Anthony</au><au>Lusczek, Elizabeth R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing bias when using artificial intelligence in critical care medicine</atitle><jtitle>Journal of critical care</jtitle><addtitle>J Crit Care</addtitle><date>2024-08</date><risdate>2024</risdate><volume>82</volume><spage>154796</spage><pages>154796-</pages><artnum>154796</artnum><issn>0883-9441</issn><issn>1557-8615</issn><eissn>1557-8615</eissn><abstract>•As artificial intelligence (AI) use in critical care increases, identifying and minimizing sources of bias is essential•Bias can be introduced (and be minimized) at all stages of the AI lifecycle•Reliance on AI in clinical practice without addressing bias may result in unfair and inequitable treatment of patients•Diverse, multidisciplinary teams that are attuned to sources of bias may have the best chance of minimizing bias in AI</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38552451</pmid><doi>10.1016/j.jcrc.2024.154796</doi></addata></record>
fulltext fulltext
identifier ISSN: 0883-9441
ispartof Journal of critical care, 2024-08, Vol.82, p.154796, Article 154796
issn 0883-9441
1557-8615
1557-8615
language eng
recordid cdi_proquest_miscellaneous_3022569787
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Artificial Intelligence
Bias
COVID-19
Critical Care
Critical Care - methods
Decision making
Disparities
Electronic health records
Fairness
Health care access
Health care expenditures
Health equity
Humans
Intensive care
Machine learning
Missing data
Palliative care
Pandemics
Sepsis
Ventilators
title Minimizing bias when using artificial intelligence in critical care medicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20bias%20when%20using%20artificial%20intelligence%20in%20critical%20care%20medicine&rft.jtitle=Journal%20of%20critical%20care&rft.au=Ranard,%20Benjamin%20L.&rft.date=2024-08&rft.volume=82&rft.spage=154796&rft.pages=154796-&rft.artnum=154796&rft.issn=0883-9441&rft.eissn=1557-8615&rft_id=info:doi/10.1016/j.jcrc.2024.154796&rft_dat=%3Cproquest_cross%3E3022569787%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-d364b22b02ee35b1c9927139cb21323d7f4e5204e83285945044561c076828cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061135482&rft_id=info:pmid/38552451&rfr_iscdi=true