Loading…

Bioactive 3D Electrohydrodynamic Printed Lattice Architectures Augment Tenogenesis of Tendon Stem/Progenitor Cells

Tendon defect repair remains a tough clinical procedure that hinders functional motion in patients. Electrohydrodynamic (EHD) three-dimensional (3D) printing, as a novel strategy, can controllably fabricate biomimetic micro/nanoscale architecture, but the hydrophobic and bioinert nature of polymers...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-04, Vol.16 (15), p.18574-18590
Main Authors: Wang, Lei, Shi, Yubo, Qiu, Zhennan, Dang, Jingyi, Sun, Liguo, Qu, Xiaoli, He, Jiankang, Fan, Hongbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tendon defect repair remains a tough clinical procedure that hinders functional motion in patients. Electrohydrodynamic (EHD) three-dimensional (3D) printing, as a novel strategy, can controllably fabricate biomimetic micro/nanoscale architecture, but the hydrophobic and bioinert nature of polymers might be adverse to cell–material interplay. In this work, 3D EHD printed polycaprolactone (PCL) was immobilized on basic fibroblast growth factor (bFGF) using polydopamine (PDA), and the proliferation and tenogenic differentiation of tendon stem/progenitor cells (TSPCs) in vitro was researched. A subcutaneous model was established to evaluate the effects of tenogenesis and immunomodulation. We then investigated the in situ implantation and immunomodulation effects in an Achilles tendon defect model. After immobilization of bFGF, the scaffolds profoundly facilitated proliferation and tenogenic differentiation; however, PDA had only a proliferative effect. Intriguingly, the bFGF immobilized on EHD printed PCL indicated a synergistic effect on the highest expression of tenogenic gene and protein markers at 14 days, and the tenogenesis may be induced by activating the transforming growth factor-β (TGF-β) signal pathway in vitro. The subcutaneous engraftment study confirmed a tendon-like structure, similar to that of the native tendon, as well as an M2 macrophage polarization effect. Additionally, the bioactive scaffold exhibited superior efficacy in new collagen formation and repair of Achilles tendon defects. Our study revealed that the topographic cues alone were insufficient to trigger tenogenic differentiation, requiring appropriate chemical signals, and that appropriate immunomodulation was conducive to tenogenesis. The tenogenesis of TSPCs on the bioactive scaffold may be correlated with the TGF-β signal pathway and M2 macrophage polarization.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c01372