Loading…
2-D Slicewise Waveform Inversion of Sound Speed and Acoustic Attenuation for Ring Array Ultrasound Tomography Based on a Block LU Solver
Ultrasound tomography is an emerging imaging modality that uses the transmission of ultrasound through tissue to reconstruct images of its mechanical properties. Initially, ray-based methods were used to reconstruct these images, but their inability to account for diffraction often resulted in poor...
Saved in:
Published in: | IEEE transactions on medical imaging 2024-08, Vol.43 (8), p.2988-3000 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultrasound tomography is an emerging imaging modality that uses the transmission of ultrasound through tissue to reconstruct images of its mechanical properties. Initially, ray-based methods were used to reconstruct these images, but their inability to account for diffraction often resulted in poor resolution. Waveform inversion overcame this limitation, providing high-resolution images of the tissue. Most clinical implementations, often directed at breast cancer imaging, currently rely on a frequency-domain waveform inversion to reduce computation time. For ring arrays, ray tomography was long considered a necessary step prior to waveform inversion in order to avoid cycle skipping. However, in this paper, we demonstrate that frequency-domain waveform inversion can reliably reconstruct high-resolution images of sound speed and attenuation without relying on ray tomography to provide an initial model. We provide a detailed description of our frequency-domain waveform inversion algorithm with open-source code and data that we make publicly available. |
---|---|
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2024.3383816 |