Loading…

Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks

Large‐area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-06, Vol.36 (26), p.e2313971-n/a
Main Authors: Yue, Ying, Zhang, Di, Wang, Pengyu, Xia, Xiaogang, Wu, Xin, Zhang, Yuejuan, Mei, Jie, Li, Shaoqing, Li, Mingming, Wang, Yanchun, Zhang, Xiao, Wei, Xiaojun, Liu, Huaping, Zhou, Weiya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283
cites cdi_FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283
container_end_page n/a
container_issue 26
container_start_page e2313971
container_title Advanced materials (Weinheim)
container_volume 36
creator Yue, Ying
Zhang, Di
Wang, Pengyu
Xia, Xiaogang
Wu, Xin
Zhang, Yuejuan
Mei, Jie
Li, Shaoqing
Li, Mingming
Wang, Yanchun
Zhang, Xiao
Wei, Xiaojun
Liu, Huaping
Zhou, Weiya
description Large‐area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet‐driven CNNR (FD‐CNNR) technique, is presented to overcome this intractable contradiction. The FD‐CNNR technique introduces an interaction between single‐walled carbon nanotube (SWNT) and Cu─‐O. Based on the unique FD‐CNNR mechanism, large‐area flexible reorganized carbon nanofilms (RNC‐TCFs) are designed and fabricated with A3‐size and even meter‐length, including reorganized SWNT (RSWNT) films and graphene and RSWNT (G‐RSWNT) hybrid films. Synergistic improvement in strength, transmittance, and conductivity of flexible RNC‐TCFs is achieved. The G‐RSWNT TCF shows sheet resistance as low as 69 Ω sq−1 at 86% transmittance, FOM value of 35, and Young's modulus of ≈45 MPa. The high strength enables RNC‐TCFs to be freestanding on water and easily transferred to any target substrate without contamination. A4‐size flexible smart window is fabricated, which manifests controllable dimming and fog removal. The FD‐CNNR technique can be extended to large‐area or even large‐scale fabrication of TCFs and can provide new insights into the design of TCFs and other functional films. A novel facet‐driven carbon nanotube network reorganization method is developed to prepare large‐area flexible freestanding transparent and conductive carbon nanofilms with synergistic enhancement of multiple properties, such as mechanical strength, transmittance and conductivity, and the area up to A3 size and even meter‐length. Based on the film, a new smart window is fabricated.
doi_str_mv 10.1002/adma.202313971
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3033006188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072255035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi0EoqGwZYkssWGT4Mt4LssotIAUCqJFLEdn7JPUxeNJ7RnCsOIReAlejCfBo5SC2LDxsXU-f8fyT8hjzhacMfEcTAsLwYTksir4HTLjSvB5xip1l8xYJdW8yrPyiDyI8YoxVuUsv0-OZKkKmSs-Iz_WELb489v3ZUCgpw6_2MYhXUFoOk_PwHcb69pI97a_pOejx7C1sbcanBvpib8Er9HQiwA-trbvpyMFb-iq82bQvf1s-5G-C7iDkLhmpO-xC1vw9qv1W3qeFjdN_5h8qf_X2H5okJ5hv-_Cp_iQ3NuAi_joph6TD6cnF6tX8_Xbl69Xy_Vcy0LyeQ4acp03qKSulGmEUSxTG24E1wVTpQY-fY_OKiVF2vPGSDCFyTNEVopSHpNnB-8udNcDxr5ubdToHHjshlhLJiVjOS8n9Ok_6FU3BJ9el6hCCKWYVIlaHCgduhgDbupdsC2EseasngKspwDr2wDThSc32qFp0dzivxNLQHUA9tbh-B9dvXzxZvlH_gunXqvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072255035</pqid></control><display><type>article</type><title>Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks</title><source>Wiley</source><creator>Yue, Ying ; Zhang, Di ; Wang, Pengyu ; Xia, Xiaogang ; Wu, Xin ; Zhang, Yuejuan ; Mei, Jie ; Li, Shaoqing ; Li, Mingming ; Wang, Yanchun ; Zhang, Xiao ; Wei, Xiaojun ; Liu, Huaping ; Zhou, Weiya</creator><creatorcontrib>Yue, Ying ; Zhang, Di ; Wang, Pengyu ; Xia, Xiaogang ; Wu, Xin ; Zhang, Yuejuan ; Mei, Jie ; Li, Shaoqing ; Li, Mingming ; Wang, Yanchun ; Zhang, Xiao ; Wei, Xiaojun ; Liu, Huaping ; Zhou, Weiya</creatorcontrib><description>Large‐area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet‐driven CNNR (FD‐CNNR) technique, is presented to overcome this intractable contradiction. The FD‐CNNR technique introduces an interaction between single‐walled carbon nanotube (SWNT) and Cu─‐O. Based on the unique FD‐CNNR mechanism, large‐area flexible reorganized carbon nanofilms (RNC‐TCFs) are designed and fabricated with A3‐size and even meter‐length, including reorganized SWNT (RSWNT) films and graphene and RSWNT (G‐RSWNT) hybrid films. Synergistic improvement in strength, transmittance, and conductivity of flexible RNC‐TCFs is achieved. The G‐RSWNT TCF shows sheet resistance as low as 69 Ω sq−1 at 86% transmittance, FOM value of 35, and Young's modulus of ≈45 MPa. The high strength enables RNC‐TCFs to be freestanding on water and easily transferred to any target substrate without contamination. A4‐size flexible smart window is fabricated, which manifests controllable dimming and fog removal. The FD‐CNNR technique can be extended to large‐area or even large‐scale fabrication of TCFs and can provide new insights into the design of TCFs and other functional films. A novel facet‐driven carbon nanotube network reorganization method is developed to prepare large‐area flexible freestanding transparent and conductive carbon nanofilms with synergistic enhancement of multiple properties, such as mechanical strength, transmittance and conductivity, and the area up to A3 size and even meter‐length. Based on the film, a new smart window is fabricated.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313971</identifier><identifier>PMID: 38573651</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Controllability ; Dimming ; flexibility ; Graphene ; graphene and single‐walled carbon nanotube hybrid films ; large‐areas ; Modulus of elasticity ; reorganization of carbon nanotube networks ; Single wall carbon nanotubes ; single‐walled carbon nanotubes ; Smart materials ; Substrates ; Transmittance ; transparent conductive films ; Windows (apertures)</subject><ispartof>Advanced materials (Weinheim), 2024-06, Vol.36 (26), p.e2313971-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283</citedby><cites>FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283</cites><orcidid>0000-0003-1274-8780 ; 0000-0001-6851-1630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38573651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Ying</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Xia, Xiaogang</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Zhang, Yuejuan</creatorcontrib><creatorcontrib>Mei, Jie</creatorcontrib><creatorcontrib>Li, Shaoqing</creatorcontrib><creatorcontrib>Li, Mingming</creatorcontrib><creatorcontrib>Wang, Yanchun</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wei, Xiaojun</creatorcontrib><creatorcontrib>Liu, Huaping</creatorcontrib><creatorcontrib>Zhou, Weiya</creatorcontrib><title>Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Large‐area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet‐driven CNNR (FD‐CNNR) technique, is presented to overcome this intractable contradiction. The FD‐CNNR technique introduces an interaction between single‐walled carbon nanotube (SWNT) and Cu─‐O. Based on the unique FD‐CNNR mechanism, large‐area flexible reorganized carbon nanofilms (RNC‐TCFs) are designed and fabricated with A3‐size and even meter‐length, including reorganized SWNT (RSWNT) films and graphene and RSWNT (G‐RSWNT) hybrid films. Synergistic improvement in strength, transmittance, and conductivity of flexible RNC‐TCFs is achieved. The G‐RSWNT TCF shows sheet resistance as low as 69 Ω sq−1 at 86% transmittance, FOM value of 35, and Young's modulus of ≈45 MPa. The high strength enables RNC‐TCFs to be freestanding on water and easily transferred to any target substrate without contamination. A4‐size flexible smart window is fabricated, which manifests controllable dimming and fog removal. The FD‐CNNR technique can be extended to large‐area or even large‐scale fabrication of TCFs and can provide new insights into the design of TCFs and other functional films. A novel facet‐driven carbon nanotube network reorganization method is developed to prepare large‐area flexible freestanding transparent and conductive carbon nanofilms with synergistic enhancement of multiple properties, such as mechanical strength, transmittance and conductivity, and the area up to A3 size and even meter‐length. Based on the film, a new smart window is fabricated.</description><subject>Carbon</subject><subject>Controllability</subject><subject>Dimming</subject><subject>flexibility</subject><subject>Graphene</subject><subject>graphene and single‐walled carbon nanotube hybrid films</subject><subject>large‐areas</subject><subject>Modulus of elasticity</subject><subject>reorganization of carbon nanotube networks</subject><subject>Single wall carbon nanotubes</subject><subject>single‐walled carbon nanotubes</subject><subject>Smart materials</subject><subject>Substrates</subject><subject>Transmittance</subject><subject>transparent conductive films</subject><subject>Windows (apertures)</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhi0EoqGwZYkssWGT4Mt4LssotIAUCqJFLEdn7JPUxeNJ7RnCsOIReAlejCfBo5SC2LDxsXU-f8fyT8hjzhacMfEcTAsLwYTksir4HTLjSvB5xip1l8xYJdW8yrPyiDyI8YoxVuUsv0-OZKkKmSs-Iz_WELb489v3ZUCgpw6_2MYhXUFoOk_PwHcb69pI97a_pOejx7C1sbcanBvpib8Er9HQiwA-trbvpyMFb-iq82bQvf1s-5G-C7iDkLhmpO-xC1vw9qv1W3qeFjdN_5h8qf_X2H5okJ5hv-_Cp_iQ3NuAi_joph6TD6cnF6tX8_Xbl69Xy_Vcy0LyeQ4acp03qKSulGmEUSxTG24E1wVTpQY-fY_OKiVF2vPGSDCFyTNEVopSHpNnB-8udNcDxr5ubdToHHjshlhLJiVjOS8n9Ok_6FU3BJ9el6hCCKWYVIlaHCgduhgDbupdsC2EseasngKspwDr2wDThSc32qFp0dzivxNLQHUA9tbh-B9dvXzxZvlH_gunXqvs</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yue, Ying</creator><creator>Zhang, Di</creator><creator>Wang, Pengyu</creator><creator>Xia, Xiaogang</creator><creator>Wu, Xin</creator><creator>Zhang, Yuejuan</creator><creator>Mei, Jie</creator><creator>Li, Shaoqing</creator><creator>Li, Mingming</creator><creator>Wang, Yanchun</creator><creator>Zhang, Xiao</creator><creator>Wei, Xiaojun</creator><creator>Liu, Huaping</creator><creator>Zhou, Weiya</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1274-8780</orcidid><orcidid>https://orcid.org/0000-0001-6851-1630</orcidid></search><sort><creationdate>20240601</creationdate><title>Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks</title><author>Yue, Ying ; Zhang, Di ; Wang, Pengyu ; Xia, Xiaogang ; Wu, Xin ; Zhang, Yuejuan ; Mei, Jie ; Li, Shaoqing ; Li, Mingming ; Wang, Yanchun ; Zhang, Xiao ; Wei, Xiaojun ; Liu, Huaping ; Zhou, Weiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Controllability</topic><topic>Dimming</topic><topic>flexibility</topic><topic>Graphene</topic><topic>graphene and single‐walled carbon nanotube hybrid films</topic><topic>large‐areas</topic><topic>Modulus of elasticity</topic><topic>reorganization of carbon nanotube networks</topic><topic>Single wall carbon nanotubes</topic><topic>single‐walled carbon nanotubes</topic><topic>Smart materials</topic><topic>Substrates</topic><topic>Transmittance</topic><topic>transparent conductive films</topic><topic>Windows (apertures)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Ying</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Wang, Pengyu</creatorcontrib><creatorcontrib>Xia, Xiaogang</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Zhang, Yuejuan</creatorcontrib><creatorcontrib>Mei, Jie</creatorcontrib><creatorcontrib>Li, Shaoqing</creatorcontrib><creatorcontrib>Li, Mingming</creatorcontrib><creatorcontrib>Wang, Yanchun</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Wei, Xiaojun</creatorcontrib><creatorcontrib>Liu, Huaping</creatorcontrib><creatorcontrib>Zhou, Weiya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Ying</au><au>Zhang, Di</au><au>Wang, Pengyu</au><au>Xia, Xiaogang</au><au>Wu, Xin</au><au>Zhang, Yuejuan</au><au>Mei, Jie</au><au>Li, Shaoqing</au><au>Li, Mingming</au><au>Wang, Yanchun</au><au>Zhang, Xiao</au><au>Wei, Xiaojun</au><au>Liu, Huaping</au><au>Zhou, Weiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>36</volume><issue>26</issue><spage>e2313971</spage><epage>n/a</epage><pages>e2313971-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Large‐area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet‐driven CNNR (FD‐CNNR) technique, is presented to overcome this intractable contradiction. The FD‐CNNR technique introduces an interaction between single‐walled carbon nanotube (SWNT) and Cu─‐O. Based on the unique FD‐CNNR mechanism, large‐area flexible reorganized carbon nanofilms (RNC‐TCFs) are designed and fabricated with A3‐size and even meter‐length, including reorganized SWNT (RSWNT) films and graphene and RSWNT (G‐RSWNT) hybrid films. Synergistic improvement in strength, transmittance, and conductivity of flexible RNC‐TCFs is achieved. The G‐RSWNT TCF shows sheet resistance as low as 69 Ω sq−1 at 86% transmittance, FOM value of 35, and Young's modulus of ≈45 MPa. The high strength enables RNC‐TCFs to be freestanding on water and easily transferred to any target substrate without contamination. A4‐size flexible smart window is fabricated, which manifests controllable dimming and fog removal. The FD‐CNNR technique can be extended to large‐area or even large‐scale fabrication of TCFs and can provide new insights into the design of TCFs and other functional films. A novel facet‐driven carbon nanotube network reorganization method is developed to prepare large‐area flexible freestanding transparent and conductive carbon nanofilms with synergistic enhancement of multiple properties, such as mechanical strength, transmittance and conductivity, and the area up to A3 size and even meter‐length. Based on the film, a new smart window is fabricated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38573651</pmid><doi>10.1002/adma.202313971</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1274-8780</orcidid><orcidid>https://orcid.org/0000-0001-6851-1630</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-06, Vol.36 (26), p.e2313971-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3033006188
source Wiley
subjects Carbon
Controllability
Dimming
flexibility
Graphene
graphene and single‐walled carbon nanotube hybrid films
large‐areas
Modulus of elasticity
reorganization of carbon nanotube networks
Single wall carbon nanotubes
single‐walled carbon nanotubes
Smart materials
Substrates
Transmittance
transparent conductive films
Windows (apertures)
title Large‐Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single‐Walled Carbon Nanotube Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%E2%80%90Area%20Flexible%20Carbon%20Nanofilms%20with%20Synergistically%20Enhanced%20Transmittance%20and%20Conductivity%20Prepared%20by%20Reorganizing%20Single%E2%80%90Walled%20Carbon%20Nanotube%20Networks&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yue,%20Ying&rft.date=2024-06-01&rft.volume=36&rft.issue=26&rft.spage=e2313971&rft.epage=n/a&rft.pages=e2313971-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313971&rft_dat=%3Cproquest_cross%3E3072255035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3731-6aca6c6be53c95db2d5045f1d21c7058ca11521c49532a111bd3ad7d64ee08283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072255035&rft_id=info:pmid/38573651&rfr_iscdi=true